SYSTEM DESIGN
INTERVIEW HANDBOOK

/5 pages guide to ace your next
System Design Interview

Nishant Kalkhanda

Nishant Kalkhanda

Table of Contents

Fundamentals
1. Scalability

2. Availability

3. Latency vs Throughput

4. CAP Theorem

5. Load Balancers

6. Databases

/. CDN
8. Message Queues

9. Rate Limiting

10. Database Indexes

11. Caching

12. Consistent Hashing

13. Database Sharding

14. Consensus Algorithms

© 00 N O

10

12
13
14
15
16
18
19
20

15. Proxy Servers

16. Heartbeats
17. Checksums

18. Service Discovery

19. Bloom Filters

20. Gossip Protocol

Trade-offs

1. Vertical vs Horizontal Scaling

2. Strong vs Eventual Consistency

3. Stateful vs Stateless Design

4. Read vs Write Through Cache

9. SOL vs NoSQL

6. REST vs RPC

21
22
23
24
25
260

28
29
30
31
33
35

7. Synchronous vs Asynchronous

8. Batch vs Stream Processing

9. Long Polling vs WebSockets

10. Normalization vs Denormalization

11. TCP vs UDP

Architectural Patterns

1. Client-Server Architecture

2. Microservices Architecture

3. Serverless Architecture

4. Event-Driven Architecture

5. Peer-to-Peer Architecture

System Design Interview Template

40 System Design Interview Tips

10 most common Interview Questions

37
38
39
41
43

45
46
47
48
49

50
60

65

SYSTEM DESIGN
FUNDAMENTALS

1. Scalability

blog.algomaster.io

As a system grows, the performance starts to
degrade unless we adapt it to deal with that growth.

Scalability is the property of a system to handle a
growing amount of load by adding resources to the
system.

A system that can continuously evolve to support a
growing amount of work is scalable.

2. Availability

Availability refers to the proportion of time a system
is operational and accessible when required.

Availability = Uptime / (Uptime + Downtime)

Uptime: The period during which a system is
functional and accessible.

Downtime: The period during which a system is
unavailable due to failures, maintenance, or other
issues.

Availability Tiers:
Availability % Downtime per year Commonly referred as
99% 3.65 days "Two nines"
99.9% 8.76 hours "Three nines"
99.99% 52.56 minutes “Four nines"
99.999% 5.26 minutes "Five nines"
99.9999% 31.5 seconds "Six nines"

blog.algomaster.io

3. Latency vs Throughput

I Latency
I l
—_
Client ——->O) Server
 —
Throughput blog.algomaster.io
Latency

Latency refers to the time it takes for a single
operation or request to complete.
e Low latency means faster response times and a
more responsive system.
e High latency can lead to lag and poor user
experience.

Throughput
Throughput measures the amount of work done or
data processed in a given period of time.
It is typically expressed in terms of requests per
second (RPS) or transactions per second (TPS).

4. CAP Theorem

Availability

Partition
Tolerance

blog.algomaster.io

CAP stands for Consistency, Availability, and
Partition Tolerance, and the theorem states that:

It is impossible for a distributed data store to
simultaneously provide all three guarantees.

e Consistency (C): Every read receives the most
recent write or an error.

e Availability (A): Every request (read or write)
receives a non-error response, without guarantee
that it contains the most recent write.

e Partition Tolerance (P): The system continues to
operate despite an arbitrary number of messages
being dropped (or delayed) by the network
between nodes.

5. Load Balancers

-
-

C []
I

blog.algoma

Load Balancers distribute incoming network traffic
across multiple servers to ensure that no single
server is overwhelmed.

Popular Load Balancing Algorithms:
1.Round Robin: Distributes requests evenly in
circular order.
2.Weighted Round Robin: Distributes requests
based on server capacity weights.
3.Least Connections: Sends requests to server with

fewest active connections.
4.Least Response Time: Routes requests to server

with fastest response.
5.1P Hash: Assigns requests based on hashed client

IP address.

6. Databases

@éi%f?

Relational Key-Value Document Wide-Column
blog.algomaster.io
r 1
M E
N ©\ L>
In-Memory Time-Series Object-Oriented Text-Search Spatial

)
%)
Be
-
()

Blob Ledger Hierarchical Vector Embedded

A database is an organized collection of structured
or unstructured data that can be easily accessed,
managed, and updated.

Types of Databases

1. Relational Databases (RDBMS)
2. NoSQL Databases

3. In-Memory Databases

4. Graph Databases

5. Time Series Databases

6. Spatial Databases

7. Content Delivery
Network (CDN)

blog.algomaster.io

A CDN is a geographically distributed network of
servers that work together to deliver web content
(like HTML pages, JavaScript files, stylesheets,
images, and videos) to users based on their
geographic location.

The primary purpose of a CDN is to deliver content
to end-users with high availability and performance
by reducing the physical distance between the
server and the user.

When a user requests content from a website, the
CDN redirects the request to the nearest server in its
network, reducing latency and improving load times.

8. Message Queues

CEl

Queue
Producer Consumer

(=52,

Queue

Broker
blog.algomaster.io

A message queue is a communication mechanism
that enables different parts of a system to send and
receive messages asynchronously.

Producers can send messages to the queue and
move on to other tasks without waiting for
consumers to process the messages.

Multiple consumers can pull messages from the
queue, allowing work to be distributed and balanced
across different consumers.

9. Rate Limiting

N

blog.algomaster.io

Rate limiting helps protects services from being
overwhelmed by too many requests from a single
user or client.

Rate Limiting Algorithms:

1.Token Bucket: Allows bursts traffic within overall
rate limit.

2.Leaky Bucket: Smooths traffic flow at constant
rate.

3.Fixed Window Counter: Limits requests in fixed
time intervals.

4.Sliding Window Log: Tracks requests within
rolling time window.

5.Sliding Window Counter: Smooths rate between
adjacent fixed windows.

10. Database Indexes

INDEX TABLE DATABASE TABLE
Key | Pointer
e <
B
C ___.—-—-""‘D
D -
E — >
blog.algomast er.io

A database index is a super-efficient lookup table
that allows a database to find data much faster.

It holds the indexed column values along with
pointers to the corresponding rows in the table.

Without an index, the database might have to scan
every single row in a massive table to find what you
want — a painfully slow process.

But, with an index, the database can zero in on the
exact location of the desired data using the index’s
pointers.

11. Caching

Application blog.algomaster.io Database

Caching is a technique used to temporarily store
copies of data in high-speed storage layers to reduce
the time taken to access data.

The primary goal of caching is to improve system
performance by reducing latency, offloading the
main data store, and providing faster data retrieval.

Caching Strategies:
1.Read-Through Cache: Automatically fetches and
caches missing data from source.
2.Write-Through Cache: Writes data to cache and
source simultaneously.
3.Write-Back Cache: Writes to cache first, updates
source later.
4.Cache-Aside: Application manages data retrieval
and cache population.

Caching Eviction Policies:

1.Least Recently Used (LRU): Removes the item
that hasn't been accessed for the longest time.

2.Least Frequently Used (LFU): Discards items with
the lowest access frequency over time.

3.First In, First Out (FIFO): Removes the oldest
item, regardless of its usage frequency.

4.Time-to-Live (TTL): Automatically removes items
after a predefined expiration time has passed.

12. Consistent Hashing

Node 1

Key 2

\
)
y

. Node 2

blog.algomaster.io

Node 3

Node 4

Consistent Hashing is a special kind of hashing
technique that allows for efficient distribution of
data across a cluster of nodes.

Consistent hashing ensures that only a small portion
of the data needs to be reassigned when nodes are
added or removed.

How Does it Work?

1.Hash Space: Imagine a fixed circular space or "ring"
ranging from O to 2"n-1.

2.Mapping Servers: Each server is mapped to one or
more points on this ring using a hash function.

3.Mapping Data: Each data item is also hashed onto
the ring.

4.Data Assignment: A data item is stored on the first
server encountered while moving clockwise on the
ring from the item's position.

13. Database Sharding

. — - . .

Database with 3 million Rows 3 Shards with 1 million Rows each

blog.algomaster.io

Database sharding is a horizontal scaling technique
used to split a large database into smaller,
independent pieces called shards.

These shards are then distributed across multiple
servers or nodes, each responsible for handling a
specific subset of the data.

By distributing the data across multiple nodes,
sharding can significantly reduce the load on any
single server, resulting in faster query execution and
improved overall system performance.

14. Consensus Algorithms

E=0)
SN .
,/ G -~
N
N
4 \\
E=0) \ E=0)
= (==0]
//
7
NG)
=) blog.algomaster.io

In a distributed system, nodes need to work together
to maintain a consistent state.

However, due to the inherent challenges like network
latency, node failures, and asynchrony, achieving
this consistency is not straightforward.

Consensus algorithms address these challenges by
ensuring that all participating nodes agree on the
same state or sequence of events, even when some
nodes might fail or act maliciously.
Popular Consensus Algorithms
1. Paxos: Paxos works by electing a leader that
proposes a value, which is then accepted by a
majority of the nodes.
2. Raft: Raft works by designating one node as the
leader to manage log replication and ensure
consistency across the cluster.

15. Proxy Servers

Client Proxy Server Internet
blog.algomaster.io

A proxy server acts as a gateway between you and
the internet. It's an intermediary server separating
end users from the websites they browse.

2 Common types of Proxy Servers:

1.Forward Proxies: Sits in front of a client and
forwards requests to the internet on behalf of the
client.

2.Reverse Proxies: Sits in front of a web server and
forwards requests from clients to the server.

16. HeartBeats

Client Server

HeartBeat - O Online
Bs HeartBeat)
> O Online

HeartBeat > O Online

Bs

10s ‘ Offline

blog.algomaster.io

In distributed systems, a heartbeat is a periodic
message sent from one component to another to
monitor each other's health and status.

Without a heartbeat mechanism, it's hard to quickly
detect failures in a distributed system, leading to:

e Delayed fault detection and recovery

e |Increased downtime and errors

e Decreased overall system reliability

17. Checksums

0][1][Q][0]|1

0|1

blog.algomaster.io

A checksum is a unique fingerprint attached to the
data before it's transmitted.

When the data arrives at the recipient's end, the
fingerprint is recalculated to ensure it matches the
original one.

If the checksum of a piece of data matches the
expected value, you can be confident that the data
hasn't been modified or damaged.

18. Service Discovery

Service Registry

3. Call

pblog.algomaster.l0 sepvice Consumer

|
eP

Service Provider

Service discovery is a mechanism that allows services
in a distributed system to find and communicate with
each other dynamically.

It hides the complex details of where services are
located, so they can interact without knowing each
other's exact network spots.

Service discovery registers and maintains a record of
all your services in a service registry.

This service registry acts as a single source of truth
that allows your services to query and communicate
with each other.

19. Bloom Filters

blog.algomaster.io

A Bloom filter is a probabilistic data structure that
is primarily used to determine whether an element
is definitely not in a set or possibly in the set.

How Does It Work?

1.Setup: Start with a bit array of m bits, all set to
0, and k different hash functions.

2.Adding an element: To add an element, feed it
to each of the k hash functions to get k array
positions. Set the bits at all these positions to 1.

3.Querying: To query for an element, feed it to
each of the k hash functions to get k array
positions. If any of the bits at these positions
are 0, the element is definitely not in the set. If
all are 1, then either the element is in the set, or
we have a false positive.

20. Gossip Protocol

O

H(‘f
Gossip Protocol is a decentrallzed communication
protocol used in distributed systems to spread
information across all nodes.

It is inspired by the way humans share news by word-
of-mouth, where each person who learns the
information shares it with others, leading to
widespread dissemination.
How does it work?
1.Initialization: A node in the system starts with a
piece of information, known as a "gossip."
2.Gossip Exchange: At regular intervals, each node
randomly selects another node and shares its
current gossip. The receiving node then merges
the received gossip with its own.
3.Propagation: The process repeats, with each node
spreading the gossip to others.
4.Convergence: Eventually, every node in the
network will have received the gossip, ensuring
that all nodes have consistent information.

SYSTEM DESIGN
TRADE-OFFS

1. Vertical vs Horizontal Scaling

= EL
.

Vertical Scaling Horizontal Scaling
blog.algomaster.io

Vertical scaling involves boosting the power of an
existing machine (eg.. CPU, RAM, Storage) to handle
increased loads.

Scaling vertically is simpler but there's a physical
limit to how much you can upgrade a single machine
and it introduces a single point of failure.

Horizontal scaling involves adding more servers or
nodes to the system to distribute the load across
multiple machines.

Scaling horizontally allows for almost limitless
scaling but brings complexity of managing
distributed systems.

2. Strong vs Eventual Consistency

Strong consistency ensures that any read operation
returns the most recent write for a given piece of
data.

This means that once a write is acknowledged, all
subsequent reads will reflect that write

Eventual consistency ensures that, given enough
time, all nodes in the system will converge to the
same value.

However, there are no guarantees about when this
convergence will occur.

3. Stateful vs Stateless Design

Stateful Stateless
Client Client

Application Application

blog.algomaster.io

In a stateful design, the system remembers client
data from one request to the next.

It maintains a record of the client's state, which can
include session information, transaction details, or
any other data relevant to the ongoing interaction.

Stateless design treats each request as an
independent transaction. The server does not store
any information about the client's state between
requests.

Each request must contain all the information
necessary to understand and process it.

4. Read-Through vs Write-Through

Cache

Client

Write-Through Cache

6. Re.Spons l Request

2.Writes o Cache 3.Writesto DB -
<
.
5.Acknowledge 4.Acknowledge
Application Cache

blog.algomaster.io

Client

Q Read-Through Cache

6. Response/]\ 1.Request

2.Cache Miss?

3.Read from DB _

<
-

5.Get Data 4.6¢t Data

Application Cache

Database

Database

A Read-Through cache sits between your application
and your data store.

When your application requests data, it first checks
the cache.

If the data is found in the cache (a cache hit), it's
returned to the application.

If the data is not in the cache (a cache miss), the
cache itself is responsible for loading the data from
the data store, caching it, and then returning it to the
application.

In a Write-Through cache strategy, data is written
into the cache and the corresponding database
simultaneously.

Every write operation writes data to both the cache
and the data store.

The write operation is only considered complete
when both writes are successful.

5. SQL vs NoSQL

blog.algomaster.io -__> i
@@ -
[}~ mE

Key-Value Column Store
Relational Jv gx
Document

Graph

SQL databases use structured query language and
have a predefined schema. They're ideal for:
o Complex queries: SQL is powerful for querying
complex relationships between data.
e ACID compliance: Ensures data validity in high-
stake transactions (e.g., financial systems).
e Structured data: When your data structure is
unlikely to change.
Examples: MySQL, PostgreSQL, Oracle

NoSQL databases are more flexible and scalable.
They're best for:
e Big Data: Can handle large volumes of structured
and unstructured data.
* Rapid development: Schema-less nature allows
for quicker iterations.
e Scalability: Easier to scale horizontally.
Examples: MongoDB, Cassandra, Redis

6. REST vs RPC

When designing APls, two popular architectural
styles often come into consideration: REST
(Representational State Transfer) and RPC (Remote
Procedure Call). Both have their strengths and ideal
use cases. Let's dive into their key differences to help
you choose the right one for your project.

REST (Representational State Transfer)

REST is an architectural style that uses HTTP
methods to interact with resources.

Key characteristics:
o Stateless: Each request contains all necessary
information
e Resource-based: Uses URLs to represent
resources
e Uses standard HTTP methods (GET, POST, PUT,
DELETE)

e Typically returns data in JSON or XML format

RPC (Remote Procedure Call)

RPC is a protocol that one program can use to
request a service from a program located on another
computer in a network.

Key characteristics:
e Action-based: Focuses on operations or actions
e Can use various protocols (HTTP, TCP, etc.)
e Often uses custom methods
e Typically returns custom data formats

7. Synchronous vs Asynchronous

Synchronous Asynchronous

Client Server Client Server

Request

Request

Waiting

for response Continue

Working

Response ~Response

blog.algomaster.io

Synchronous Processing:
e Tasks are executed sequentially.
* Makes it easier to reason about code and handle
dependencies.
e Used in scenarios where tasks must be completed
in order like reading a file line by line.

Asynchronous Processing:
e Tasks are executed concurrently.
e Improves responsiveness and performance,
especially in I/O-bound operations
e Used when you need to handle multiple tasks
simultaneously without blocking the main thread.
like background processing jobs.

8. Batch vs Stream Processing

Batch Processing Stream Processing
— W<
data g g delayed data a instant
arrives w -Iﬂ OU?PUT Or‘l"iVeS | oufpuf
e —
= E
= T3 -1

data
accumulates .
blog.algomaster.io

Batch Processing:
Process large volumes of data at once, typically at
scheduled intervals.
Efficient for handling massive datasets, ideal for
tasks like reporting or data warehousing.
High Latency - results are available only after the
entire batch is processed.
Examples: ETL jobs, data aggregation, periodic
backups.

Stream Processing:
Process data in real-time as it arrives.
Perfect for real-time analytics, monitoring, and
alerting systems.
Minimal latency since data is processed within
milliseconds or seconds of arrival.
Examples: Real-time fraud detection, live data
feeds, loT applications.

9. Long Polling vs WebSockets

blog.algomaster.io

Long-Polling

Client

Server

-

Response 2

Response 1

Request 2

Pending response
or timeout

Pending response
or timeout

Websockets
Client Server
Handshake | Connection
Opened
Bidirectional
Messages Open and
Persistence
Connection

In a Long Polling connection, the client repeatedly
requests updates from the server at regular
intervals.

If the server has new data, it sends a response
immediately; otherwise, it holds the connection until
data is available.

This can lead to Increased latency and higher server
load due to frequent requests, even when no data is
available.

Websokcet establishes a persistent, full-duplex
connection between the client and server,
allowing real-time data exchange without the
overhead of HTTP requests.

Unlike the traditional HTTP protocol, where the
client sends a request to the server and waits for
a response, WebSockets allow both the client
and server to send messages to each other
independently and continuously after the
connection is established.

10. Normalization vs Denormalization

Normalized Denormalized

customerId
name
email

phone id
h name
email
date
orderId)
customerId qugrm'ry
date pRHce
i \)
qu?nh'ry \/
price
4 ®,

A4

Normalization in database design involves splitting
up data into related tables to ensure each piece of
information is stored only once.

It aims to reduce redundancy and improve data
integrity.

Example: A customer database can have two
separate tables: one for customer details and
another for orders, avoiding duplication of customer
information for each order.

Denormalization is the process of combining data
back into fewer tables to improve query
performance.

This often means introducing redundancy (duplicate
information) back into your database.

Example: A blog website can store the latest
comments with the posts in the same table
(denormalized) to speed up the display of post and
comments, instead of storing them separately
(normalized).

11. TCP vs UDP

When it comes to data transmission over the
internet, two key protocols are at the forefront: TCP
and UDP.

TCP (Transmission Control Protocol):

e Reliable: Ensures all data packets arrive in order
and are error-free.

e Connection-Oriented: Establishes a connection
before data transfer, making it ideal for tasks
where accuracy is crucial (e.g., web browsing, file
transfers).

e Slower: The overhead of managing connections
and ensuring reliability can introduce latency.

UDP (User Datagram Protocol):

e Faster: Minimal overhead allows for quick data
transfer, perfect for time-sensitive applications.

e Connectionless: No formal connection setup;
data is sent without guarantees, making it ideal
for real-time applications (e.g., video streaming,
online gaming).

e Unreliable: No error-checking or ordering, so
some data packets might be lost or arrive out of
order.

ARCHITECTURAL
PATTERNS

1. Client-Server Architecture

Q/ Internet Server

Clients blog.algomaster.io

In this model, the system is divided into two main
components: the client and the server.

e Client: The client is typically the user-facing part
of the system, such as a web browser, mobile
app, or desktop application. Clients send
requests to the server and display the results to
the user.

e Server: The server processes client requests,
manages resources like databases, and sends the
required data or services back to the client.

2. Microservices Architecture

blog.algomaster.io

Microservices architecture is an approach to
designing a system as a collection of loosely
coupled, independently deployable services.

Each microservice corresponds to a specific
business function and communicates with other
services via lightweight protocols, often HTTP/REST
or messaging queues.

Services are small, focused on doing one thing well
and each service has its own database to ensure
loose coupling.

3. Serverless Architecture

Serverless architecture abstracts away the
underlying infrastructure, allowing developers to
focus solely on writing code.

In a serverless model, the cloud provider
automatically manages the infrastructure, scaling,
and server maintenance.

Developers deploy functions that are triggered by
events, and they are billed only for the compute time
consumed.

Ideal for applications that react to events, such as
processing files, triggering workflows, or handling
real-time data streams.

4. Event-Driven Architecture

X
Producer 1
prN Queue 1

Producer 2 o 2
— = crmners)
Queue 2

Producer 3
—_

Event Channel

blog.algomaster.io

Event-Driven Architecture (EDA) is a design pattern
in which the system responds to events, or changes
in state, that are propagated throughout the system.

In EDA, components are decoupled and
communicate through events, which are typically
handled asynchronously.

Events can be processed in parallel by multiple
consumers, allowing the system to scale efficiently.

5. Peer-to-Peer (P2P) Architecture

B ————
o000 000
T e B ————
o0 blog.algomaster.io
T e -

P2P architecture is a decentralized model where
each node, or "peer," in the network has equal
responsibilities and capabilities.

Unlike the client-server model, there is no central
server; instead, each peer can act as both a client
and a server, sharing resources and data directly
with other peers.

P2P networks are known for their resilience and
scalability since there is no central point of failure
and system can scale easily as new peers join the
network.

SYSTEM DESIGN
INTERVIEW
TEMPLATE

A step-by-step guide to
System Design Interviews

Step 1. Clarify Requirements

Start by clarifying functional and non-functional
requirements. Here are things to consider:

Functional Requirements:

e What are the core features that the system
should support?

e Who are the users (eg.. customers, internal teams
etc.)?

e How will users interact with the system (eg.. web,
mobile app, API, etc.)?

e What are the key data types the system must
handle (text, images, structured data, etc).

e Are there any external systems or third-party
services the system needs to integrate with?

Non-Functional Requirements:

e |s the system read heavy or write heavy and
what’s the read-to-write ratio?

e Can the system have some downtime, or does it
need to be highly available?

e Are there any specific latency requirements?

e How critical is data consistency?

e Should we rate limit the users to prevent abuse of
the system?

Step 2. Capacity Estimation

& qi 0D

User‘s Trafflc STor‘age
blog.alc ter.io
Memory Network

Estimate capacity to get an overall idea about how
big a system you are going to design.

This can include things like:

e How many users are expected to use the system
daily and monthly and maximum concurrent
users during peak hours?

» Expected read/write requests per second.

e Amount of storage you would need to store all
the data.

e How much memory you might need to store
frequently accessed data in cache.

* Network bandwidth requirements based on the
estimated traffic volume and data transfer sizes.

Note: Check with the interviewer if capacity
estimation is necessary.

Step 3. High-Level Design

Application Servers

N = /@'@

Load Balancer Se—n -
- == -’
Clients -y
. Application v

blog.algomaster.lo gervers

Database

Sketch out a simple block diagram that outlines the
major system components like:

1.Clients: User-facing interfaces (eg.. mobile, pc)

2.Application Servers: To process client requests.

3.Load Balancers: To distribute incoming traffic
across multiple servers.

4.Services: Specialized components performing
specific functions.

5.Databases: To store user information and
metadata.

6.Storage: To store files, images or videos.

7.Caching: To improve latency and reduce load on
the database.

8.Message Queues: If using asynchronous
communication.

9.External Services: If integrating with third-party
APls (e.g., payment gateways).

Step 4. Database Design

This steps involve modeling the data, choosing the
right storage for the system, designing the database
schema and optimizing the storage and retrieval of
data based on the access patterns.

Data Modeling

e |dentify the main data entities or objects that the
system needs to store and manage (e.g., users,
products, orders).

e Consider the relationships between these
entities and how they interact with each other.

e Determine the attributes or properties
associated with each entity (e.g., a user has an
email, name, address).

o |dentify any unique identifiers or primary keys
for each entity.

e Consider normalization techniques to ensure
data integrity and minimize redundancy.

Choose the Right Storage

blog.algomaster.io P —

Key-Value Column Store

Relational N

Graph

Document

Evaluate the requirements and characteristics of
the data to determine the most suitable database
type.

Consider factors such as data structure,
scalability, performance, consistency, and query
patterns.

Relational databases (e.g., MySQL, PostgreSQL)
are suitable for structured data with complex
relationships and ACID properties.

NoSQL databases (e.g., MongoDB, Cassandra) are
suitable for unstructured or semi-structured
data, high scalability, and eventual consistency.
Consider using a combination of databases if
different data subsets have distinct
requirements.

Step 5. APl Design

Define how different components of the system
interact with each other and how external clients can
access the system's functionality.

List down the APIs you want to expose to external
clients based on the problem.

Select an appropriate API style based on the
system's requirements and the clients' needs (eg..
RESTful, GraphQL, RPC).

Choose Communication Protocols:

e HTTPS: Commonly used for RESTful APIs and
web-based communication.

 WebSockets: Useful for real-time, bidirectional
communication between clients and servers (e.g.,
chat applications).

» gRPC: Efficient for inter-service communication
in microservices architectures.

e Messaging Protocols: AMQP, MQTT for
asynchronous messaging (often used with
message queues).

Step 6. Dive Deep into Key
Components

Your interviewer will likely want to focus on specific
areas so pay attention and discuss those things in
more detail.

It can differ based on the problem.

For example: if you are asked to design a url
shortener, the interviewer will most likely want you
to focus on the algorithm for generating short urls.

And, if the problem is about designing a chat
application, you should talk about how the messages
will be sent and received in real time.

Here are some more common areas of deep dives:

e Databases: How would you handle a massive
increase in data volume? Discuss sharding
(splitting data across multiple databases),
replication (read/write replicas).

e Application Servers: How would you add more
servers behind the load balancer for increased
traffic?

e Caching: Where would you add caching to reduce
latency and load on the database and how would
you deal with cache invalidation?

Step 7. Address Key Concerns

This step involves identifying and addressing the
core challenges that your system design is likely to
encounter.

These challenges can range from scalability and
performance to reliability, security, and cost
concerns.

Addressing Scalability and Performance Concerns:

e Scale vertically (Scale-up) by increasing the
capacity of individual resources (e.g., CPU,
memory, storage).

e Scale horizontally (Scale-out) by adding more
nodes and use load balancers to evenly distribute
the traffic among the nodes.

e Implement caching to reduce the load on
backend systems and improve response times.

e Optimize database queries using indexes.

* Denormalize data when necessary to reduce join
operations.

e Use database partitioning and sharding to
improve query performance.

e Utilize asynchronous programming models to
handle concurrent requests efficiently.

Addressing Reliability

Analyze the system architecture and identify
potential single point of failures.

Design redundancy into the system components
(multiple load balancers, database replicas) to
eliminate single points of failure.

Consider geographical redundancy to protect
against regional failures or disasters.

Implement data replication strategies to ensure
data availability and durability.

Implement circuit breaker patterns to prevent
cascading failures and protect the system from
overload.

Implement retry mechanisms with exponential
backoff to handle temporary failures and prevent
overwhelming the system during recovery.
Implement comprehensive monitoring and
alerting systems to detect failures, performance
issues, and anomalies.

40
SYSTEM DESIGN
INTERVIEW TIPS

1. Understand the functional and non-functional
requirements before designing.

2. Clearly define the use cases and constraints of the
system.

3. There is no perfect solution. It’s all about
tradeoffs.

4. Assume everything can and will fail. Make it fault
tolerant.

5. Keep it simple. Avoid over-engineering.

6. Design your system for scalability from the ground
up.

7. Prefer horizontal scaling over vertical scaling for
scalability.

8. Use Load Balancers to ensure high availability and
distribute traffic.

9. Consider using SQL Databases for structured data
and ACID transactions.

10. Opt for NoSQL Databases when dealing with
unstructured data.

11. Consider using a graph database for highly
connected data.

12. Use Database Sharding to scale SQL databases
horizontally.

13. Use Database Indexing to optimize the read
queries in databases.

14. Assume everything can and will fail. Make it fault
tolerant.

15. Use Rate Limiting to prevent system from
overload and DOS attacks.

16. Consider using WebSockets for real-time
communication.

17. Use Heartbeat Mechanisms to detect failures.

18. Consider using a message queue for
asynchronous communication.

19. Implement data partitioning and sharding for
large datasets.

20. Consider denormalizing databases for read-
heavy workloads.

21. Use bloom filters to check for anitem in a large
dataset quickly.

22. Use CDNs to reduce latency for a global user
base.

23. Use caching to reduce load on the database and
improve response times.

24. Use write-through cache for write-heavy
applications.

25. Use read-through cache for read-heavy
applications.

26. Use object storage like S3 for storing large
datasets and media files.

27. Implement Data Replication and Redundancy to
avoid single point of failure.

28. Implement Autoscaling to handle traffic spikes
smoothly.

29. Use Asynchronous processing for background
tasks.

30. Use batch processing for non-urgent tasks to
optimize resources.

31. Make operations idempotent to simplify retry
logic and error handling.

32. Consider using a data lake or data warehouse for
analytics and reporting.

33. Implement comprehensive logging and
monitoring to track the system’s performance and
health.

34. Implement circuit breakers to prevent a single
failing service from bringing down the entire system.

35. Implement chaos engineering practices to test
system resilience and find vulnerabilities.

36. Design for statelessness when possible to
improve scalability and simplify architecture.

37. Use failover mechanisms to automatically switch
to a redundant system when a failure is detected.

38. Distribute your system across different data
centers to prevent localized failures.

39. Use Time-To-Live (TTL) values to automatically
expire cached data and reduce staleness.

40. Pre-populate critical data in the cache to avoid
cold starts.

10 MOST COMMON
SYSTEM DESIGN
INTERVIEW
QUESTIONS

1. Desigh a URL Shortener like TinyURL

Functional Requirements:

e Generate a unique short URL for a given long URL

e Redirect the user to the original URL when the
short URL is accessed

e Allow users to customize their short URLs
(optional)

e Support link expiration where URLs are no longer
accessible after a certain period

e Provide analytics on link usage (optional)

Non-Functional Requirements:

» High availability: The service should be up 99.9%
of the time.

e Low latency: Url shortening and redirects should
happen in milliseconds.

e Scalability: The system should handle millions of
requests per day.

e Durability: Shortened URLs should work for
years.

e Security to prevent malicious use, such as
phishing.

2. Design a Chat Application like
Whatsapp

Functional Requirements:
Support one-on-one and group conversations
between users.
Keep track of online/offline status of users.
Provide message delivery statuses (sent,
delivered, read).
Support multimedia messages (images, videos,
voice notes, documents).
Push notifications for new messages, calls, and
mentions (optional)

Non-Functional Requirements:
Real-time message delivery with minimal latency.
The system should handle millions of concurrent
users.
The system should be highly available. However,
the availability can be compromised in the
interest of consistency.
Durability (messages shouldn’t get lost)

3. Design a social media platform like
Instagram

Functional Requirements:
e Users can upload and share images and videos.
e Users can like, comment, and share posts.
e Users can follow/unfollow other users.
e Generate and display news feed for users
showing posts from people the user follows.
e Support for tagging other users in posts and
comments.

Non-Functional Requirements:

* High availability: The service should be up 99.9%
of the time.

e Low latency for news feed generation.

e High Scalability: The platform should handle
millions of concurrent users.

e High Durability: User’s uploaded photos and
videos should’t get lost.

e Eventual Consistency: If a user doesn’t see a
photo for sometime, it should be fine.

4. Design a video streaming service like
YouTube

Functional Requirements:

e Users can upload videos.

e Support for adding video titles, descriptions,
tags, and thumbnails.

e Users can stream videos on-demand.

e Search functionality to find videos, channels, and
playlists based on keywords.

e Users can like, dislike, comment on, and share
videos.

e Service should record view count of videos.

Non-Functional Requirements:

* High availability (e.g., 99.99% uptime) to ensure
the service is accessible at all times.

e Low latency: Video streaming should be real-time
without lag

» High Scalability: The service should be able to
scale horizontally to accommodate increasing
numbers of users and video content.

e High Durability: Uploaded videos shouldn’t get
lost)

5. Desigh an E-commerce Platform like
Amazon

Functional Requirements:

e Allow sellers to list products with details like title,
description, price, images, and specifications.

e Users can add products to a shopping cart and
wishlist.

e Users can search for products, categories, and
brands based on keywords

e Users can place orders for one or multiple
products.

e Users can rate and review products they have
purchased.

Non-Functional Requirements:

e High Scalability: The platform should handle
millions of users, products, and transactions
simultaneously.

e High Availability: The service should be up 99.9%
of the time.

* Low latency for page load times, search queries,
and checkout processes.

e High Durability: All critical data (user data,
product listings, orders) is stored with high
durability.

6. Designh a Ride-Sharing Service like
Uber

Functional Requirements:

e Riders can see all the nearby available drivers.

e Riders can book a ride by specifying a pickup
location, drop-off location.

e Match riders with nearby available drivers in real-
time.

e Real-time estimation of ride cost and time of
arrival based on distance, traffic, and demand.

e Real-time tracking of the ride both for rider and
driver.

Non-Functional Requirements:

e Scalability: The system should scale to handle
millions of users and rides simultaneously.

e Ensure low latency for real-time matching, GPS
tracking, and ride requests.

e Ensure high availability with minimal downtime
(e.g., 99.9% uptime).

e Consistency: The riders and drivers should have a
consistent view of the system.

7. Design a File Storage Service like
Google Drive

Functional Requirements:

e Users should be able to upload files of various
types and sizes.

e Users should be able to download files on-
demand.

e Users should be able to share files and folders
with other users via links or email invitations.

» Allow users to search for files and folders by
name, type, content, or metadata.

e Support synchronization of files across multiple
devices.

Non-Functional Requirements:

e Scalability: The system should be able to handle
millions of users and billions of files.

e Ensure low-latency file uploads, downloads, and
search operations.

e Availability: The service should be highly
available, with minimal downtime.

e Ensure consistency across all user devices during
file synchronization.

e Durability: User’s files should not be lost.

8. Design a Web Crawler

Functional Requirements:
The system should be able to fetch URLs from the
web efficiently.
Handle different content types (e.g., text, images,
multimedia).
Prioritize URLs based on specific criteria (e.g.,
importance, freshness).
Store crawled data efficiently in a database or file
system.

Non-Functional Requirements:
Scalability: The system should scale to handle
millions or billions of web pages.

Minimize latency in fetching and processing web
pages.

Optimize throughput to maximize the number of
pages crawled per unit of time.

9. Design a Notification System

Functional Requirements:
Support for various notification channels such as
email, SMS, push notifications (mobile/web), and
in-app notifications.
Support for different types of notifications, such
as transactional, promotional, and informational.
Ability to schedule notifications for future
delivery.
Ability to send notifications in bulk, especially for
campaigns or mass updates.
Automatic retry mechanisms for failed
notification deliveries.

Non-Functional Requirements:
High Scalability: The system should handle
millions of notifications per minute, especially
during peak times.
High availability (e.g., 99.99% uptime) to ensure
notifications are sent without interruption.
Low latency for sending notifications, especially
for real-time and high-priority notifications.
Reliability: The system should ensure reliable
delivery of notifications across all supported
channels.

10. Design a Logging and Monitoring
System

Functional Requirements:

e Collect logs from various sources such as
applications, servers, databases, and
microservices.

e Support for multiple log formats (e.g., JSON,
plaintext, XML).

e Archive old logs to cost-effective storage (e.g.,
cloud-based cold storage).

e Provide powerful querying capabilities to filter
and search logs based on time range, log level,
source, and other attributes.

e Set up alerts based on specific log patterns,
thresholds, or anomalies.

Non-Functional Requirements:

e Scalability: The system should scale horizontally
to handle increasing volumes of logs, metrics, and
monitoring data.

e Low-latency log ingestion and processing to
ensure real-time monitoring.

e High availability with minimal downtime (e.g.,
99.99% uptime) to ensure continuous monitoring.

e Durability: Ensure that log data is stored with
high durability, with replication across multiple
nodes or data centers.

