28/06/2025, 15:10 Complete JS Course Syllabus

Complete JS Course Syllabus

Y Chapter 1: Variables & Declarations

(JavaScript — Learn Everything Series by Sheryians Coding School)

@ What are Variables?

Variables are containers that hold data.
They help us store, reuse, and update information in JavaScript — from simple values like

numbers to complex data like arrays and objects.

Think of a variable as a box with a name on it. You can put something inside it (a value), and later
check or change what's inside.

In JavaScript, you create these boxes using keywords: var, let, or const.

var, let, and const - Line-by-Line Comparison

€ var - Old and risky
* Scoped to functions, not blocks
e Can be redeclared and reassigned

¢ Hoisted to the top with undefined value

var score = 10;

var score = 20;

i let —Modern and safe

* Scoped to blocks ({})

1/36

28/06/2025, 15:10 Complete JS Course Syllabus

e Can be reassigned but not redeclared

* Hoisted, but stays in the Temporal Dead Zone (TDZ)

let age = 25;
age = 30; &
let age = 40; X

& const - Constant values

e Scoped to blocks

e Cannot be reassigned or redeclared
* Value must be assigned at declaration

e TDZ applies here too
is

const PI = 3.14;
PI = 3.14159; X

< But: If const holds an object/array, you can still change its contents:
is

const student = { name: "Riya" };
student.name = "Priya"; V)
student = {}; X

¢ Scope in Real Life

Block Scope - Code inside {} like inloops, if, etc.

Function Scope - Code inside a function

let and const follow block scope.

e var ignores block scope — which leads to bugs.

2/36

28/06/2025, 15:10 Complete JS Course Syllabus

{
var x = 5;
let y = 10;
const z = 15;
}

console. log(x);
console. log(y);

XXQ

console. log(z);

& Hoisting

JavaScript prepares memory before running code.

It moves all declarations to the top — this is called hoisting.
But:
e var is hoisted and set to undefined

e let and const are hoisted but not initialized — so accessing them early gives

ReferenceError

console.log(a);

var a = 10;
is

console.log(b); X
let b = 20;

L. Common Confusions (JS Reality Checks)
* const doesn't make things fully constant. It protects the variable, not the value.

e var isoutdated — it's better to use let and const .

3/36

28/06/2025, 15:10 Complete JS Course Syllabus

e let and const behave similarly, but const gives more safety — use it when you're not

planning to reassign.

“@ Mindset Rule

Use const by default. Use 1let only when you plan to change the value.
Avoid var — it belongs to the past.

Practice Zone
1. Declare your name and city using const , and your age using let .

2. Try this and observe the result:
is

let x
let x

Il
ul

10;

3. Guess the output:
is

console. log(count);
var count = 42;

4. Create a const object and add a new key to it — does it work?
5. Try accessing a let variable before declaring it — what error do you see?

6. Change a const array by pushing a value. Will it throw an error?

@ Chapter 2: Data Types + Type System

4/36

28/06/2025, 15:10 Complete JS Course Syllabus

(JavaScript — Learn Everything Series by Sheryians Coding School)

W What Are Data Types?

In JavaScript, every value has a type.

These types define what kind of data is being stored — a number, text, boolean, object, etc.
There are two categories:
e Primitive types - stored directly.

* Reference types - stored as memory references.

® Primitive Data Types

1. String - Text

"hello" , 'Sheryians'

2. Number - Any numeric value

3, -99, 3.14

3. Boolean - True or false

true, false

4. Undefined - Variable declared but not assigned

let x; = x is undefined

5. Null = Intentional empty value

let x = null;
6. Symbol = Unique identifier (rarely used)

7. Bigint - Very large integers
123456789012345678901234567890n

@ Reference Data Types

e Object > { name: "Harsh", age: 26 }

5/36

28/06/2025, 15:10 Complete JS Course Syllabus
e Array > [10, 20, 30]

e Function » function greet() {}

These are not copied directly, but by reference.

X\ typeof Operator
Used to check the data type of a value:
js

typeof "Sheryians"
typeof 99

typeof true

typeof undefined
typeof null

typeof []

typeof {}
typeof function(){}

Note: typeof null === "object" is a bug, but has existed since the early days of JS.

Type Coercion (Auto-Conversion)
JavaScript auto-converts types in some operations:
is
II5II + 1
II5II — 1
true + 1

null + 1
undefined + 1

@ Loose vs Strict Equality

6/36

28/06/2025, 15:10 Complete JS Course Syllabus

e == compares value with type conversion
e === compares value + type (no conversion)
js
5 —_ II5II
5 —— II5II
Always prefer === for accurate comparisons.

NaN - Not a Number
is
typeof NaN
Even though it means “Not a Number”, NaN is actually of type number .

This is because operations like @ / @ or parseInt("abc") still produce a numeric result —

just an invalid one.

« Truthy and Falsy Values

Falsy values:

false, 0, "", null, undefined, NaN

Everything else is truthy, including:
""", "false", [1, {}, function(){}

Example:
is

lf (II@II) {
console. log("Runs");

7/36

28/06/2025, 15:10 Complete JS Course Syllabus
‘@ Mindset

JavaScript will often auto-convert types behind the scenes.

Always stay aware of what data type you're working with.

~J

Common Confusions

* typeof null is "object" — thisisa bug.

undefined means the variable was never assigned.

null means you intentionally set it to "nothing".

e '5' +1is "51" but '5' - 1is 4.

Practice Zone

1. Predict the output:

console.log(null + 1);
console. log("5" + 3);
console. log("5" - 3);
console. log(true + false);

2. Check types:

js

console. log(typeof []1);
console. log(typeof null);
console. log(typeof 123n);

3. Truthy or Falsy?

8/36

28/06/2025, 15:10 Complete JS Course Syllabus

console. log(Boolean(0));
console. log(Boolean("0"));
console. log(Boolean([]));
console. log(Boolean(undefined));

4. Write a function isEmpty(value) that checks if a given valueis null, undefined, or "" .

5. Compare with loose vs strict:
is

console.log(5 == "5");
console. log(5 === "5");

Chapter 3: Operators

(JavaScript — Learn Everything Series by Sheryians Coding School)

“\ What are Operators?

Operators are special symbols or keywords in JavaScript used to perform operations on values
(operands).

You'll use them in calculations, comparisons, logic, assignments, and even type checks.

Think of them as the verbs of your code — they act on data.

+ Arithmetic Operators
Used for basic math.

js

9/36

28/06/2025, 15:10

/ // division

o°

Example:
is

let a = 10, b = 3;
b);
console.log(a % b);
console.log(2 *x* 3);

+

console. log(a

o°

il Assignment Operators

Assign values to variables.

*=, /:, %=
Example:
is

let score = 5;
score += 2;

Used in condition checks.

is

-~ Comparison Operators

Complete JS Course Syllabus

10/36

28/06/2025, 15:10 Complete JS Course Syllabus

== // equal (loose)

=== // equal (strict — value + type)
= // not equal (loose)

l== // not equal (strict)

> < >= <=
Example:
js
console.log(5 == "5"); // true
console.log(5 === "5"); // false

Logical Operators

Used to combine multiple conditions.
is

& // AND — both must be true
|| // OR — either one true
! // NOT — negates truthiness

Example:
is

let age = 20, hasID = true;
if (age >= 18 && hasID) {
console. log("Allowed");

© Unary Operators

Used on a single operand.

is

11/36

28/06/2025, 15:10 Complete JS Course Syllabus

+ // tries to convert to number
- // negates

++ // increment

— // decrement

typeof // returns data type

Example:
is

let x = "5";
console.log(+x); // 5 (converted to number)

? Ternary Operator (Conditional)
Shorthand for if...else
is

condition ? valueIfTrue : valuelfFalse

Example:
is

let score = 80;
let grade = score > 50 ? "Pass" : "Fail";

/ typeof Operator

js

typeof 123 // "“number"
typeof "hi" // "string"
typeof null // "object" (JS bug)
typeof [] // "object"

12/36

28/06/2025, 15:10 Complete JS Course Syllabus

typeof {}
typeof function(){}

“@ Mindset

Operators make logic happen.

They help you make decisions, combine values, and create expressions.
Try to:

* Use === instead of == to avoid type bugs.

Use ternary for quick decisions, not complex ones.

Think in truthy/falsy when using &&, ||, ! .

-~

Common Confusions

"5" + 1 is "51" (string concat), but "5" - 1 is 4 (number subtract)

I''value is a quick trick to convert anything into a boolean

e Pre-increment (++i) vs post-increment (i++) return different results

Practice Zone

1. Predict:
js
console.log("10" + 1);
console. log("10" - 1);

console. log(true + false);
console.log(!!"Sheryians");

2. Convert using unary +

13/36

28/06/2025, 15:10 Complete JS Course Syllabus

II42II;
+str;

let str
let num
console. log(num);

3. Use ternary:

let age = 17;
let msg = age >= 18 ? "Adult" : "Minor";

4. Build a calculator:
function calc(a, b, operator)

5. Score logic:

let marks = 82;

2 Chapter 4: Control Flow

(JavaScript — Learn Everything Series by Sheryians Coding School)

14/36

28/06/2025, 15:10 Complete JS Course Syllabus

@ whatis Control Flow?

Control flow decides which code runs, when it runs, and how many times it runs.

It's like decision-making + direction in your JavaScript program.

If operators are the verbs, control flow is the traffic signal.

< if, else if, else
is
if (condition) {

} else if (anotherCondition) {

} else {

Example:
is
let marks = 78;

if (marks >= 90) {
console. log("A");

} else if (marks >= 75) {
console. log("B");

} else {
console. log("C");

© switch-case
Great for checking one variable against many values.

is

15/36

28/06/2025, 15:10 Complete JS Course Syllabus

switch (value) {

case valuel:
// code
break;

case value2:
// code
break;

default:
// fallback

Example:
js
let fruit = "apple";

switch (fruit) {

case ''banana":
console. log("Yellow");
break;

case "apple":
console. log("Red");
break;

default:
console. log("Unknown");

Early Return Pattern
Used in functions to exit early if some condition fails.
is

function checkAge(age) {
if (age < 18) return "Denied";
return "Allowed";

16/36

28/06/2025, 15:10 Complete JS Course Syllabus

This avoids deep nesting and makes logic cleaner.

Y. Common Confusions
e switch-case executes all cases after a match unless you break
e else if chain works top-down — order matters

* You can use truthy/falsy values directly in if

“@ Mindset

Control flow = conditional storytelling.

It helps your program make choices and respond differently to different inputs.

Write readable branches. Avoid nesting too deep — use early return if needed.

Practice Zone

1. Student grade logic:

2. Rock-paper-scissors:

3. Login message:

17/36

28/06/2025, 15:10 Complete JS Course Syllabus

let isLoggedIn = true;
let isAdmin = false;

4. Weather advice:
js

let weather = "rainy";

5. Age checker:

& Chapter 5: Loops

(JavaScript — Learn Everything Series by Sheryians Coding School)

Why Loops?
Loops help us repeat code without rewriting it.

If a task needs to be done multiple times (e.g., printing 1-10, going through an array, or
checking each character in a string), loops are the backbone.

18/36

28/06/2025, 15:10 Complete JS Course Syllabus
=
for Loop
js

for (let 1 = 0; 1 < 5; i++) {

console. log(i);

e Startfrom i = 0
e Runtil i <5

¢ Increase i each time

while Loop
is

let i = 0;
while (i < 5) {
console.log(i);

i++;

* Condition is checked before running

do—-while Loop
js

let i = 0;

do {
console. log(i);
i++;

} while (i < 5);

* Runs at least once, even if condition is false

19/36

28/06/2025, 15:10 Complete JS Course Syllabus

@ break and continue
* break : Exit loop completely

e continue : Skip current iteration and move to next

for (let i = 1; i <= 5; i++) {
if (i === 3) continue;

console.log(i);

© for-of — Arrays & Strings
is

for (let char of "Sheryians") {
console. log(char);

e Works on anything iterable (arrays, strings)

€ forEach — Arrays
js

let nums = [10, 20, 30];
nums.forEach((num) => {

console. log(num);

});

e Cleanerthan for for arrays, but you can't break/return

20/36

28/06/2025, 15:10 Complete JS Course Syllabus
€ for-in — Objects (and arrays if needed)
js
let user = { name: "Harsh", age: 26 };

for (let key in user) {
console. log(key, userlkeyl);

Goes over keys in objects

Common Confusions

e for-in is for objects, not arrays (may cause issues with unexpected keys)

forEach can'tuse break or continue

while and do-while work best when number of iterations is unknown

“@ Mindset

Loops = data processor.

Use the right loop for the job:
e for = best for numbers/indexes
e for-of =forarray values
e for-in = for object keys

e while = for unpredictable conditions

Practice Zone
1. Print1to 10 using for
2. Print even numbers between 1to 20

3. Reverse a string using loop

21/36

28/06/2025, 15:10 Complete JS Course Syllabus
4. Sum of all numbers in an array
5. Print all characters of a name using for-of
6. Print all object keys and values using for-in
7. Use continue to skip a specific number
8. Guess number game — use while to ask until correct
9. Pattern: Print triangle using *

10. Sum of even numbers in an array using forEach

Chapter 6: Functions

(JavaScript — Learn Everything Series by Sheryians Coding School)

“@ What are Functions?

Functions are blocks of reusable logic.
Instead of repeating the same task again and again, wrap it in a function and reuse it with

different inputs.

Think of a function like a vending machine:
e Input: you give money + item code
e Qutput: it gives you the item

e Logic: hidden inside

X Function Declarations

is

22/36

28/06/2025, 15:10 Complete JS Course Syllabus

function greet() {

console. log("Welcome to Sheryians!");
b
greet();

You define it once, then call it whenever needed.

is

function greet(name) {

console. log("Hello " + name);
b
greet("Harsh");

* name is aparameter

* "Harsh" is the argument you pass

© Return Values
is

function sum(a, b) {
return a + b;

}
let total = sum(5, 10);

e return sends back a result to wherever the function was called

e After return, function exits

£ Function Expressions

23/36

28/06/2025, 15:10 Complete JS Course Syllabus
js

const greet = function () {
console. log("Hello!");

};

¢ Functions stored in variables

e Cannot be hoisted (you can't call them before they're defined)

23 Arrow Functions
js

const greet = () => {
console. log("Hi!");

};

e Cleaner syntax

e Noown this,no arguments object

" Default + Rest + Spread
js

function multiply(a =1, b =1) {

return a x b;

function sum(...nums) {
return nums.reduce((acc, val) => acc + val, 0);

let nums = [1, 2, 31;
console. log(sum(...nums));

24/36

28/06/2025, 15:10 Complete JS Course Syllabus
e a =1 - default parameter
e ,..nums - restparameter

e ...nums (incall) = spread operator

@ First-Class Functions
JavaScript treats functions as values:
e Assign to variables
e Pass as arguments

e Return from other functions
is

function shout(msg) {
return msg.toUpperCase();

b

function processMessage(fn) {
console. log(fn("hello"));

b

processMessage(shout);

@ Higher-Order Functions (HOF)
Functions that accept other functions or return functions.

is

function createMultiplier(x) {
return function (y) {
return x x y;
b
b
let double = createMultiplier(2);
console. log(double(5));

25/36

28/06/2025, 15:10 Complete JS Course Syllabus

& Closures & Lexical Scope
Closures = when a function remembers its parent scope, even after the parent has finished.
is

function outer() {
let count = 0;
return function () {
count++;
console. log(count);
b
b
let counter = outer();
counter();

counter();

Even after outer is done, counter stillremembers count .

lIFE — Immediately Invoked Function Expression

(function () {
console.log("Runs immediately");

HO;

Used to create private scope instantly.

% Hoisting: Declarations vs Expressions
is

hello();
function hello() {
console. log("Hi");

26/36

28/06/2025, 15:10 Complete JS Course Syllabus

greet();

const greet = function () {
console. log("Hi");

b

Declarations are hoisted

» Expressions are not

Common Confusions

e Arrow functions don't have their own this
* You can't break out of forEach

e Closures often trap old variable values

e Return vs console.log — don't mix them up

“@ Mindset

Functions are your logic blocks + memory holders (via closure).

They keep your code clean, DRY, and reusable.

Practice Zone
1. Write a BMI calculator function
2. Create a greet function with default name
3. Sum all numbers using rest parameter
4. Create a closure counter function
5. Write a function that returns another function
6. Use a function to log even numbers in array

7. Create a pure function to add tax

27/36

28/06/2025, 15:10 Complete JS Course Syllabus

8. Use IIFE to show welcome message
9. Write a discount calculator (HOF style)

10. Make a toUpperCase transformer using HOF

& Chapter 7: Arrays

(JavaScript — Learn Everything Series by Sheryians Coding School)

“@ What is an Array?

An array is like a row of boxes, where each box holds a value and has an index (0, 1, 2...).
Arrays help you store multiple values in a single variable — numbers, strings, or even

objects/functions.
is

let fruits = ["apple", "banana", "mango"l;

'L Creating & Accessing Arrays
is

let marks = [90, 85, 78];
console. log(marks[1]1);
marks[2] = 80;

* Indexing starts from O

* You can access, update, or overwrite values by index

28/36

28/06/2025, 15:10
® Common Array Methods
&€ Modifiers (Change original array)
is
let arr = [1, 2, 3, 4];

arr.push(5);
arr.pop();

arr.shift();
arr.unshift(o);

arr.splice(1, 2);

arr.reverse();

({ Extractors (Don't modify original array)
is
let newArr = arr.slice(1, 3);

arr.sort();

Iteration Methods

map()

Returns a new array with modified values.
is

let prices = [100, 200, 3001];

Complete JS Course Syllabus

let taxed = prices.map(p => p *x 1.18);

filter()

29/36

28/06/2025, 15:10 Complete JS Course Syllabus

Filters out elements based on a condition.

js

let nums = [1, 2, 3, 4];
let even = nums.filter(n => n % 2 === 0);
reduce()

Reduces the array to a single value.
js

let total = nums.reduce((acc, val) => acc + val, 0);

forEach()
Performs an action for each element (but returns undefined).

js

nums.forEach(n => console.log(n));

find(), some(), every()
js

nums.find(n => n > 2);
nums.some(n => n > 5);
nums.every(n => n > 0);

Qo .
/. Destructuring & Spread
is
let [first, second] = ["a", "b", "c"1;
let newArr = [...nums, 99];

30/36

28/06/2025, 15:10 Complete JS Course Syllabus

. Common Confusions
* splice changes original array, slice does not
e forEach vs map: map returns a new array

* sort() converts values to strings unless compareFn is provided:

[10, 2, 3].sort();

Use:
is

arr.sort((a, b) =>a - b);

“@ Mindset

Arrays are structured, transformable data.
You loop over them, transform them, filter them, or reduce them — all to control what shows up

in your Ul or logic.

Practice Zone
1. Create an array of student names and print each
2. Filter even numbers from an array
3. Map prices to include GST (18%)
4. Reduce salaries to calculate total payroll
5. Find the first student with grade A
6. Write a function to reverse an array

7. Sort array of ages in ascending order

31/36

28/06/2025, 15:10 Complete JS Course Syllabus
8. Destructure first two elements of an array
9. Use some() tocheck if any student failed

10. Use spread to copy and add new item

& Chapter 8: Objects

(JavaScript — Learn Everything Series by Sheryians Coding School)

“@ What is an Object?

Objects in JavaScript are like real-world records — a collection of key-value pairs.

They help us store structured data (like a student, a product, or a user profile).
js
let student = {
name: "Ravi",
age: 21,

isEnrolled: true

};

#" Key-Value Structure
e Keys are always strings (even if you write them as numbers or identifiers)

* Values can be anything — string, number, array, object, function, etc.

console. log(student['"name"]);

console. log(student.age);

32/36

28/06/2025, 15:10 Complete JS Course Syllabus

? Dot vs Bracket Notation
* Use dot notation for fixed key names

e Use bracket notation for dynamic or multi-word keys

student ["full name"] = "Ravi Kumar";

V]
student.course = "JavaScript"; [V,

I Nesting and Deep Access
Objects can have nested objects (objects inside objects)
is
let user = {
name: "Amit",
address: {
city: "Delhi",
pincode: 110001

}
};

console. log(user.address.city);

Qp . .
/"~ Object Destructuring
You can extract values directly:

js

let { name, age } = student;

For nested objects:

33/36

28/06/2025, 15:10 Complete JS Course Syllabus

is

let {
address: { city }
} = user;

Looping Through Objects
for-in loop
is

for (let key in student) {
console. log(key, studentl[keyl);

Object.keys(), Object.values(), Object.entries()

js

Object.keys(student);
Object.entries(student);

W Copying Objects
Shallow Copy (one level deep)
is

let newStudent = { ...student };
let newOne = Object.assign({}, student);

Deep Copy (nested levels)

js

let deepCopy = JSON.parse(JSON.stringify(user));

34/36

28/06/2025, 15:10 Complete JS Course Syllabus

! Note: JSON-based copy works only for plain data (no functions, undefined, etc.)

? Optional Chaining
Avoids errors if a nested property is undefined:
is

console.log(user?.address?.city);
console. log(user?.profile?.email);

“@ Computed Properties
You can use variables as keys:
is
let key = "marks";
let report = {

[key]: 89
b

! Common Confusions

Shallow copy copies only the first level

e for-in includes inherited keys (be cautious!)

delete obj.key removes the property

Spread # deep copy

“ Mindset

35/36

28/06/2025, 15:10 Complete JS Course Syllabus

Objects are structured state — perfect for modeling anything complex: a user, a form, a product,
etc.

Use destructuring, chaining, and dynamic keys wisely.

Practice Zone
1. Create an object for a book (title, author, price)
2. Access properties using both dot and bracket
3. Write a nested object (user with address and location)
4. Destructure name and age from a student object
5. Loop through keys and values of an object
6. Convert object to array using Object.entries()
7. Copy an object using spread operator
8. Create a deep copy of an object with nested structure
9. Use optional chaining to safely access deep values

10. Use a variable as a key using computed properties

36/36

