
1/36

Complete JS Course Syllabus

📦 Chapter 1: Variables & Declarations

(JavaScript – Learn Everything Series by Sheryians Coding School)

🧠 What are Variables?

Variables are containers that hold data.

They help us store, reuse, and update information in JavaScript — from simple values like

numbers to complex data like arrays and objects.

Think of a variable as a box with a name on it. You can put something inside it (a value), and later

check or change what's inside.

In JavaScript, you create these boxes using keywords: var , let , or const .

🧪 var, let, and const – Line-by-Line Comparison

🧓 var – Old and risky

Scoped to functions, not blocks

Can be redeclared and reassigned

Hoisted to the top with undefined value

🧑‍💻 let – Modern and safe

Scoped to blocks ({})

js

var score = 10;
var score = 20; // OK

28/06/2025, 15:10 Complete JS Course Syllabus

2/36

Can be reassigned but not redeclared

Hoisted, but stays in the Temporal Dead Zone (TDZ)

🔐 const – Constant values

Scoped to blocks

Cannot be reassigned or redeclared

Value must be assigned at declaration

TDZ applies here too

👉 But: If const holds an object/array, you can still change its contents:

🔥 Scope in Real Life

Block Scope → Code inside {} like in loops, if , etc.

Function Scope → Code inside a function

let and const follow block scope.

var ignores block scope — which leads to bugs.

js

let age = 25;
age = 30; // ✅
let age = 40; // ❌ Error (same block)

js

const PI = 3.14;
PI = 3.14159; // ❌ Error

js

const student = { name: "Riya" };
student.name = "Priya"; // ✅ OK
student = {}; // ❌ Error

js

28/06/2025, 15:10 Complete JS Course Syllabus

3/36

🧨 Hoisting

JavaScript prepares memory before running code.

It moves all declarations to the top — this is called hoisting.

But:

var is hoisted and set to undefined

let and const are hoisted but not initialized — so accessing them early gives

ReferenceError

⚠️ Common Confusions (JS Reality Checks)

const doesn't make things fully constant. It protects the variable, not the value.

var is outdated — it's better to use let and const .

{
 var x = 5;
 let y = 10;
 const z = 15;
}
console.log(x); // ✅ 5
console.log(y); // ❌ ReferenceError
console.log(z); // ❌ ReferenceError

js

console.log(a); // undefined
var a = 10;

js

console.log(b); // ❌ ReferenceError
let b = 20;

28/06/2025, 15:10 Complete JS Course Syllabus

4/36

let and const behave similarly, but const gives more safety — use it when you're not

planning to reassign.

🧠 Mindset Rule

🧪 Practice Zone

1. Declare your name and city using const , and your age using let .

2. Try this and observe the result:

3. Guess the output:

4. Create a const object and add a new key to it — does it work?

5. Try accessing a let variable before declaring it — what error do you see?

6. Change a const array by pushing a value. Will it throw an error?

Use const by default. Use let only when you plan to change the value.

Avoid var — it belongs to the past.

js

let x = 5;
let x = 10;

js

console.log(count);
var count = 42;

🧠 Chapter 2: Data Types + Type System

28/06/2025, 15:10 Complete JS Course Syllabus

5/36

(JavaScript – Learn Everything Series by Sheryians Coding School)

📦 What Are Data Types?

In JavaScript, every value has a type.

These types define what kind of data is being stored — a number, text, boolean, object, etc.

There are two categories:

Primitive types – stored directly.

Reference types – stored as memory references.

🔹 Primitive Data Types

1. String → Text

"hello" , 'Sheryians'

2. Number → Any numeric value

3 , -99 , 3.14

3. Boolean → True or false

true , false

4. Undefined → Variable declared but not assigned

let x; → x is undefined

5. Null → Intentional empty value

let x = null;

6. Symbol → Unique identifier (rarely used)

7. BigInt → Very large integers

123456789012345678901234567890n

🔹 Reference Data Types

Object → { name: "Harsh", age: 26 }

28/06/2025, 15:10 Complete JS Course Syllabus

6/36

Array → [10, 20, 30]

Function → function greet() {}

These are not copied directly, but by reference.

🔍 typeof Operator

Used to check the data type of a value:

Note: typeof null === "object" is a bug, but has existed since the early days of JS.

🔁 Type Coercion (Auto-Conversion)

JavaScript auto-converts types in some operations:

🚨 Loose vs Strict Equality

js

typeof "Sheryians" // "string"
typeof 99 // "number"
typeof true // "boolean"
typeof undefined // "undefined"
typeof null // "object" ← known bug
typeof [] // "object"
typeof {} // "object"
typeof function(){} // "function"

js

"5" + 1 // "51" → number converted to string
"5" - 1 // 4 → string converted to number
true + 1 // 2
null + 1 // 1
undefined + 1 // NaN

28/06/2025, 15:10 Complete JS Course Syllabus

7/36

== compares value with type conversion

=== compares value + type (no conversion)

Always prefer === for accurate comparisons.

🧪 NaN – Not a Number

Even though it means “Not a Number”, NaN is actually of type number .

This is because operations like 0 / 0 or parseInt("abc") still produce a numeric result —

just an invalid one.

🔦 Truthy and Falsy Values

Falsy values:

false , 0 , "" , null , undefined , NaN

Everything else is truthy, including:

"0" , "false" , [] , {} , function(){}

Example:

js

5 == "5" // true
5 === "5" // false

js

typeof NaN // "number"

js

if ("0") {
 console.log("Runs"); // "0" is a non-empty string = truthy
}

28/06/2025, 15:10 Complete JS Course Syllabus

8/36

🧠 Mindset

JavaScript will often auto-convert types behind the scenes.

Always stay aware of what data type you’re working with.

❓ Common Confusions

typeof null is "object" — this is a bug.

undefined means the variable was never assigned.

null means you intentionally set it to "nothing".

'5' + 1 is "51" but '5' - 1 is 4 .

🧪 Practice Zone

1. Predict the output:

2. Check types:

3. Truthy or Falsy?

js

console.log(null + 1);
console.log("5" + 3);
console.log("5" - 3);
console.log(true + false);

js

console.log(typeof []);
console.log(typeof null);
console.log(typeof 123n);

js

28/06/2025, 15:10 Complete JS Course Syllabus

9/36

4. Write a function isEmpty(value) that checks if a given value is null , undefined , or "" .

5. Compare with loose vs strict:

console.log(Boolean(0)); // falsy
console.log(Boolean("0")); // truthy
console.log(Boolean([])); // truthy
console.log(Boolean(undefined));// falsy

js

console.log(5 == "5"); // ?
console.log(5 === "5"); // ?

🔄 Chapter 3: Operators

(JavaScript – Learn Everything Series by Sheryians Coding School)

🔧 What are Operators?

Operators are special symbols or keywords in JavaScript used to perform operations on values

(operands).

You’ll use them in calculations, comparisons, logic, assignments, and even type checks.

Think of them as the verbs of your code — they act on data.

➕ Arithmetic Operators

Used for basic math.

js

+ // addition
- // subtraction
* // multiplication

28/06/2025, 15:10 Complete JS Course Syllabus

10/36

Example:

🧮 Assignment Operators

Assign values to variables.

Example:

🧾 Comparison Operators

Used in condition checks.

/ // division
% // modulus (remainder)
** // exponentiation (power)

js

let a = 10, b = 3;
console.log(a + b); // 13
console.log(a % b); // 1
console.log(2 ** 3); // 8

js

= // assigns value
+= // a += b => a = a + b
-= // a -= b
*=, /=, %=

js

let score = 5;
score += 2; // score = 7

js

28/06/2025, 15:10 Complete JS Course Syllabus

11/36

Example:

✅ Logical Operators

Used to combine multiple conditions.

Example:

🌀 Unary Operators

Used on a single operand.

== // equal (loose)
=== // equal (strict – value + type)
!= // not equal (loose)
!== // not equal (strict)
> < >= <=

js

console.log(5 == "5"); // true
console.log(5 === "5"); // false

js

&& // AND – both must be true
|| // OR – either one true
! // NOT – negates truthiness

js

let age = 20, hasID = true;
if (age >= 18 && hasID) {
 console.log("Allowed");
}

js

28/06/2025, 15:10 Complete JS Course Syllabus

12/36

Example:

❓ Ternary Operator (Conditional)

Shorthand for if...else

Example:

🧪 typeof Operator

+ // tries to convert to number
- // negates
++ // increment
-- // decrement
typeof // returns data type

js

let x = "5";
console.log(+x); // 5 (converted to number)

js

condition ? valueIfTrue : valueIfFalse

js

let score = 80;
let grade = score > 50 ? "Pass" : "Fail";

js

typeof 123 // "number"
typeof "hi" // "string"
typeof null // "object" (JS bug)
typeof [] // "object"

28/06/2025, 15:10 Complete JS Course Syllabus

13/36

🧠 Mindset

Operators make logic happen.

They help you make decisions, combine values, and create expressions.

Try to:

Use === instead of == to avoid type bugs.

Use ternary for quick decisions, not complex ones.

Think in truthy/falsy when using && , || , ! .

❓ Common Confusions

"5" + 1 is "51" (string concat), but "5" - 1 is 4 (number subtract)

!!value is a quick trick to convert anything into a boolean

Pre-increment (++i) vs post-increment (i++) return different results

🧪 Practice Zone

1. Predict:

2. Convert using unary +

typeof {} // "object"
typeof function(){} // "function"

js

console.log("10" + 1);
console.log("10" - 1);
console.log(true + false);
console.log(!!"Sheryians");

js

28/06/2025, 15:10 Complete JS Course Syllabus

14/36

3. Use ternary:

4. Build a calculator:

5. Score logic:

let str = "42";
let num = +str;
console.log(num); // 42

js

let age = 17;
let msg = age >= 18 ? "Adult" : "Minor";

js

// Using switch + arithmetic operators
function calc(a, b, operator) {
 // +, -, *, /
}

js

let marks = 82;
// Print "Excellent", "Good", "Average", or "Fail" based on ranges

🧭 Chapter 4: Control Flow

(JavaScript – Learn Everything Series by Sheryians Coding School)

28/06/2025, 15:10 Complete JS Course Syllabus

15/36

🚦 What is Control Flow?

Control flow decides which code runs, when it runs, and how many times it runs.

It's like decision-making + direction in your JavaScript program.

If operators are the verbs, control flow is the traffic signal.

🧱 if, else if, else

✅ Example:

🌀 switch-case

Great for checking one variable against many values.

js

if (condition) {
 // runs if condition is true
} else if (anotherCondition) {
 // runs if first was false, second is true
} else {
 // runs if none are true
}

js

let marks = 78;

if (marks >= 90) {
 console.log("A");
} else if (marks >= 75) {
 console.log("B");
} else {
 console.log("C");
}

js

28/06/2025, 15:10 Complete JS Course Syllabus

16/36

✅ Example:

🔁 Early Return Pattern

Used in functions to exit early if some condition fails.

switch (value) {
 case value1:
 // code
 break;
 case value2:
 // code
 break;
 default:
 // fallback
}

js

let fruit = "apple";

switch (fruit) {
 case "banana":
 console.log("Yellow");
 break;
 case "apple":
 console.log("Red");
 break;
 default:
 console.log("Unknown");
}

js

function checkAge(age) {
 if (age < 18) return "Denied";
 return "Allowed";
}

28/06/2025, 15:10 Complete JS Course Syllabus

17/36

This avoids deep nesting and makes logic cleaner.

⚠️ Common Confusions

switch-case executes all cases after a match unless you break

else if chain works top-down — order matters

You can use truthy/falsy values directly in if

🧠 Mindset

Control flow = conditional storytelling.

It helps your program make choices and respond differently to different inputs.

Write readable branches. Avoid nesting too deep — use early return if needed.

🧪 Practice Zone

1. Student grade logic:

2. Rock-paper-scissors:

3. Login message:

js

// Write a program that prints A, B, C, D, or F based on marks

js

// Given player1 and player2's choice, print winner or draw

js

28/06/2025, 15:10 Complete JS Course Syllabus

18/36

4. Weather advice:

5. Age checker:

let isLoggedIn = true;
let isAdmin = false;

// Show different messages based on combination

js

let weather = "rainy";

// Use switch-case to print what to wear

js

// Return "Kid", "Teen", "Adult", or "Senior"

🔁 Chapter 5: Loops

(JavaScript – Learn Everything Series by Sheryians Coding School)

🔄 Why Loops?

Loops help us repeat code without rewriting it.

If a task needs to be done multiple times (e.g., printing 1–10, going through an array, or

checking each character in a string), loops are the backbone.

28/06/2025, 15:10 Complete JS Course Syllabus

19/36

🔁 for Loop

Start from i = 0

Run till i < 5

Increase i each time

🔁 while Loop

Condition is checked before running

🔁 do-while Loop

Runs at least once, even if condition is false

js

for (let i = 0; i < 5; i++) {
 console.log(i);
}

js

let i = 0;
while (i < 5) {
 console.log(i);
 i++;
}

js

let i = 0;
do {
 console.log(i);
 i++;
} while (i < 5);

28/06/2025, 15:10 Complete JS Course Syllabus

20/36

⛔ break and continue

break : Exit loop completely

continue : Skip current iteration and move to next

🌀 for-of – Arrays & Strings

Works on anything iterable (arrays, strings)

🧱 forEach – Arrays

Cleaner than for for arrays, but you can’t break/return

js

for (let i = 1; i <= 5; i++) {
 if (i === 3) continue;
 console.log(i); // Skips 3
}

js

for (let char of "Sheryians") {
 console.log(char);
}

js

let nums = [10, 20, 30];
nums.forEach((num) => {
 console.log(num);
});

28/06/2025, 15:10 Complete JS Course Syllabus

21/36

🧱 for-in – Objects (and arrays if needed)

Goes over keys in objects

⚠️ Common Confusions

for-in is for objects, not arrays (may cause issues with unexpected keys)

forEach can't use break or continue

while and do-while work best when number of iterations is unknown

🧠 Mindset

Loops = data processor.

Use the right loop for the job:

for = best for numbers/indexes

for-of = for array values

for-in = for object keys

while = for unpredictable conditions

🧪 Practice Zone

1. Print 1 to 10 using for

2. Print even numbers between 1 to 20

3. Reverse a string using loop

js

let user = { name: "Harsh", age: 26 };
for (let key in user) {
 console.log(key, user[key]);
}

28/06/2025, 15:10 Complete JS Course Syllabus

22/36

4. Sum of all numbers in an array

5. Print all characters of a name using for-of

6. Print all object keys and values using for-in

7. Use continue to skip a specific number

8. Guess number game – use while to ask until correct

9. Pattern: Print triangle using *

10. Sum of even numbers in an array using forEach

🧮 Chapter 6: Functions

(JavaScript – Learn Everything Series by Sheryians Coding School)

🧠 What are Functions?

Functions are blocks of reusable logic.

Instead of repeating the same task again and again, wrap it in a function and reuse it with

different inputs.

Think of a function like a vending machine:

Input: you give money + item code

Output: it gives you the item

Logic: hidden inside

🛠️ Function Declarations

js

28/06/2025, 15:10 Complete JS Course Syllabus

23/36

You define it once, then call it whenever needed.

🧾 Parameters vs Arguments

name is a parameter

"Harsh" is the argument you pass

🌀 Return Values

return sends back a result to wherever the function was called

After return , function exits

🧰 Function Expressions

function greet() {
 console.log("Welcome to Sheryians!");
}
greet();

js

function greet(name) {
 console.log("Hello " + name);
}
greet("Harsh");

js

function sum(a, b) {
 return a + b;
}
let total = sum(5, 10); // total is 15

28/06/2025, 15:10 Complete JS Course Syllabus

24/36

Functions stored in variables

Cannot be hoisted (you can’t call them before they’re defined)

🏹 Arrow Functions

Cleaner syntax

No own this , no arguments object

🧂 Default + Rest + Spread

js

const greet = function () {
 console.log("Hello!");
};

js

const greet = () => {
 console.log("Hi!");
};

js

function multiply(a = 1, b = 1) {
 return a * b;
}

function sum(...nums) {
 return nums.reduce((acc, val) => acc + val, 0);
}

let nums = [1, 2, 3];
console.log(sum(...nums)); // Spread

28/06/2025, 15:10 Complete JS Course Syllabus

25/36

a = 1 → default parameter

...nums → rest parameter

...nums (in call) → spread operator

🎯 First-Class Functions

JavaScript treats functions as values:

Assign to variables

Pass as arguments

Return from other functions

🧠 Higher-Order Functions (HOF)

Functions that accept other functions or return functions.

js

function shout(msg) {
 return msg.toUpperCase();
}
function processMessage(fn) {
 console.log(fn("hello"));
}
processMessage(shout);

js

function createMultiplier(x) {
 return function (y) {
 return x * y;
 };
}
let double = createMultiplier(2);
console.log(double(5)); // 10

28/06/2025, 15:10 Complete JS Course Syllabus

26/36

🔐 Closures & Lexical Scope

Closures = when a function remembers its parent scope, even after the parent has finished.

Even after outer is done, counter still remembers count .

⚡ IIFE – Immediately Invoked Function Expression

Used to create private scope instantly.

🚀 Hoisting: Declarations vs Expressions

js

function outer() {
 let count = 0;
 return function () {
 count++;
 console.log(count);
 };
}
let counter = outer();
counter(); // 1
counter(); // 2

js

(function () {
 console.log("Runs immediately");
})();

js

hello(); // works
function hello() {
 console.log("Hi");
}

28/06/2025, 15:10 Complete JS Course Syllabus

27/36

Declarations are hoisted

Expressions are not

⚠️ Common Confusions

Arrow functions don’t have their own this

You can’t break out of forEach

Closures often trap old variable values

Return vs console.log – don't mix them up

🧠 Mindset

Functions are your logic blocks + memory holders (via closure).

They keep your code clean, DRY, and reusable.

🧪 Practice Zone

1. Write a BMI calculator function

2. Create a greet function with default name

3. Sum all numbers using rest parameter

4. Create a closure counter function

5. Write a function that returns another function

6. Use a function to log even numbers in array

7. Create a pure function to add tax

greet(); // error
const greet = function () {
 console.log("Hi");
};

28/06/2025, 15:10 Complete JS Course Syllabus

28/36

8. Use IIFE to show welcome message

9. Write a discount calculator (HOF style)

10. Make a toUpperCase transformer using HOF

🧰 Chapter 7: Arrays

(JavaScript – Learn Everything Series by Sheryians Coding School)

🧠 What is an Array?

An array is like a row of boxes, where each box holds a value and has an index (0, 1, 2…).

Arrays help you store multiple values in a single variable — numbers, strings, or even

objects/functions.

🏗️ Creating & Accessing Arrays

Indexing starts from 0

You can access, update, or overwrite values by index

js

let fruits = ["apple", "banana", "mango"];

js

let marks = [90, 85, 78];
console.log(marks[1]); // 85
marks[2] = 80; // Update index 2

28/06/2025, 15:10 Complete JS Course Syllabus

29/36

⚙️ Common Array Methods

🧱 Modifiers (Change original array)

🔍 Extractors (Don't modify original array)

🔄 Iteration Methods

map()

Returns a new array with modified values.

filter()

js

let arr = [1, 2, 3, 4];

arr.push(5); // Add to end
arr.pop(); // Remove last

arr.shift(); // Remove first
arr.unshift(0); // Add to start

arr.splice(1, 2); // Remove 2 items starting at index 1
arr.reverse(); // Reverse order

js

let newArr = arr.slice(1, 3); // Copy from index 1 to 2

arr.sort(); // Lexical sort by default

js

let prices = [100, 200, 300];
let taxed = prices.map(p => p * 1.18);

28/06/2025, 15:10 Complete JS Course Syllabus

30/36

Filters out elements based on a condition.

reduce()

Reduces the array to a single value.

forEach()

Performs an action for each element (but returns undefined).

find(), some(), every()

✂️ Destructuring & Spread

js

let nums = [1, 2, 3, 4];
let even = nums.filter(n => n % 2 === 0);

js

let total = nums.reduce((acc, val) => acc + val, 0);

js

nums.forEach(n => console.log(n));

js

nums.find(n => n > 2); // First match
nums.some(n => n > 5); // At least one true
nums.every(n => n > 0); // All true

js

let [first, second] = ["a", "b", "c"];
let newArr = [...nums, 99]; // Spread to copy & add

28/06/2025, 15:10 Complete JS Course Syllabus

31/36

⚠️ Common Confusions

splice changes original array, slice does not

forEach vs map : map returns a new array

sort() converts values to strings unless compareFn is provided:

Use:

🧠 Mindset

Arrays are structured, transformable data.

You loop over them, transform them, filter them, or reduce them — all to control what shows up

in your UI or logic.

🧪 Practice Zone

1. Create an array of student names and print each

2. Filter even numbers from an array

3. Map prices to include GST (18%)

4. Reduce salaries to calculate total payroll

5. Find the first student with grade A

6. Write a function to reverse an array

7. Sort array of ages in ascending order

js

[10, 2, 3].sort(); // [10, 2, 3] → ["10", "2", "3"] → wrong order

js

arr.sort((a, b) => a - b); // Correct numeric sort

28/06/2025, 15:10 Complete JS Course Syllabus

32/36

8. Destructure first two elements of an array

9. Use some() to check if any student failed

10. Use spread to copy and add new item

🧱 Chapter 8: Objects

(JavaScript – Learn Everything Series by Sheryians Coding School)

🧠 What is an Object?

Objects in JavaScript are like real-world records – a collection of key-value pairs.

They help us store structured data (like a student, a product, or a user profile).

🔑 Key-Value Structure

Keys are always strings (even if you write them as numbers or identifiers)

Values can be anything – string, number, array, object, function, etc.

js

let student = {
 name: "Ravi",
 age: 21,
 isEnrolled: true
};

js

console.log(student["name"]); // Ravi
console.log(student.age); // 21

28/06/2025, 15:10 Complete JS Course Syllabus

33/36

📍 Dot vs Bracket Notation

Use dot notation for fixed key names

Use bracket notation for dynamic or multi-word keys

🏗️ Nesting and Deep Access

Objects can have nested objects (objects inside objects)

✂️ Object Destructuring

You can extract values directly:

For nested objects:

js

student["full name"] = "Ravi Kumar"; // ✅
student.course = "JavaScript"; // ✅

js

let user = {
 name: "Amit",
 address: {
 city: "Delhi",
 pincode: 110001
 }
};

console.log(user.address.city); // Delhi

js

let { name, age } = student;

28/06/2025, 15:10 Complete JS Course Syllabus

34/36

🔁 Looping Through Objects

for-in loop

Object.keys(), Object.values(), Object.entries()

📦 Copying Objects

Shallow Copy (one level deep)

Deep Copy (nested levels)

js

let {
 address: { city }
} = user;

js

for (let key in student) {
 console.log(key, student[key]);
}

js

Object.keys(student); // ["name", "age", "isEnrolled"]
Object.entries(student); // [["name", "Ravi"], ["age", 21], ...]

js

let newStudent = { ...student };
let newOne = Object.assign({}, student);

js

let deepCopy = JSON.parse(JSON.stringify(user));

28/06/2025, 15:10 Complete JS Course Syllabus

35/36

❓ Optional Chaining

Avoids errors if a nested property is undefined:

🧠 Computed Properties

You can use variables as keys:

⚠️ Common Confusions

Shallow copy copies only the first level

for-in includes inherited keys (be cautious!)

delete obj.key removes the property

Spread ≠ deep copy

🧠 Mindset

❗ Note: JSON-based copy works only for plain data (no functions, undefined, etc.)

js

console.log(user?.address?.city); // Delhi
console.log(user?.profile?.email); // undefined (no error)

js

let key = "marks";
let report = {
 [key]: 89
};

28/06/2025, 15:10 Complete JS Course Syllabus

36/36

Objects are structured state – perfect for modeling anything complex: a user, a form, a product,

etc.

Use destructuring, chaining, and dynamic keys wisely.

🧪 Practice Zone

1. Create an object for a book (title, author, price)

2. Access properties using both dot and bracket

3. Write a nested object (user with address and location)

4. Destructure name and age from a student object

5. Loop through keys and values of an object

6. Convert object to array using Object.entries()

7. Copy an object using spread operator

8. Create a deep copy of an object with nested structure

9. Use optional chaining to safely access deep values

10. Use a variable as a key using computed properties

28/06/2025, 15:10 Complete JS Course Syllabus

