W diro =

‘ '-.. R A } " A \
- ‘l A i iﬂ-‘
\ " X .
o— "} \
——————

‘ & r 3
i) -
a |
| =—— v—-
£ g
[T N, oy
L y N
3 J-FT. .

f
i
P
i |

— ==
= —
1
1
: |
i L] e — =

R |
:

f

, (/

V) UNE/]

: S =

AV W LA

A D]
UMY YL . 1P,

) J

>, | 0
i {IVW NUTUMA_ o X i
O 4 .
y § . } p (s
S TR -_b M@.JJ A e ¢ I ‘"- l, .ul":. A " JS M‘f Y 471 L (Y

) ‘ Al .’) ¢
A A Vd'A" A

R - === = —= - - —— —

0 Y g | , ;
’. L .i-‘f S U (ATIVUL

I
[— —=
— ——— i l-l |

A ?f}.ﬁ ﬂ”_

UM MM

)
VYW J‘L N\

e | ~ 'l'
L SN ANU N B d

'

*

i
» ;
" | -y - .
A8 A 3 o ; y B
—— - s ‘ . Sl 3, N AR & 't

[N,
1~l"‘ A AlA’

“ y '
DU, IRAA U9

e b

10 (LR
. ..-;'.- e ?:;r! » £
; IH

A
7
\
v : N : Y
' (AL L 1O Y 'ﬁ \) Y NG Sl L) \
. 1 ':1 " *;. . |
' " N BN a . , L SN | i " %
o bow(flade swookild do Soxed Hepo—- = - o
; Y P =
b % / . { 1
."' 'n. 1 ~a

".I' “.2 11,.-—-.-

O

g0 AM
19 1€, g A)y TN

10
-““ “4-_-‘4&‘ .-, r‘l‘ | _.f,u’ g _ ..//!1’// l/ (f.‘/./'“
¢
H*'l

t
v ¢ !H"

- "t
A 'L‘ ‘ﬂl' D ' I‘lA /Y C (" r .
r mm_ ok 2 |

¢ ,)l) SA/VA /

'D

VG

e B
Y. pdkeas

MUY dU JWal 5

e L/
"/J-.

) / ' , S
. ‘AJ.‘.- .-u...--*j C ~ _,‘j J _.ju A 'Illl u

VKJWE’W y Fine DF

.‘-
b c .r/" .“, ‘ ” i, kL
#

t : = = =

i

B

L'LL"“ ‘

‘_J,u,‘.L @t ° _ -

IM.M)

| WK .[1 -U...-

a. A J_.tl

Pegs ——

, U
Ny Odpi A

(

7 Y a704) ¢

’-_.-“'
-

/ | | i .
-y Bt O Ml adel
\ ,
'V' ba' ;" / @’l'('u WO\ . v ':- Il 8% . 1007 & 4 = —
-nt LYAQ [MQQ[EP —————-————i T
P “’ T
-I ‘Q *'i ‘ ‘mf Lb MUr f_’ O P i 1Y ‘

\/

L0/ ' p W
o o)
. ;Hm i) m A l.!i.',] T

o B/
)N/A 74 o J

v N Wi naents
/f}' |
r /Ibtl‘l /|

AN,

\ '
i
’ (Y Date —
. !
! . "r
Y .. A T PagB R —
- M _ ~ - |
— L —— - #-_ﬂ_“ e —— .

.Jilr -“ ". //L

5)
A

' ,- I { \')
'-Jﬂ X1)\ [V

wt ddle e

R
A 1 €

et/ no.

' J
I

‘ 'l//l”a::' ’L‘I -

In \
— A YU .A.i"llll/ 2%

.-. " ..h‘l-"
e
] k !;_:I;I- M S ur .
¢ Tj:"' 'J-F-':E;,'. .
& L]
o -"-1"1-- "l b
=l ¥ S -
-] ;Tr.-l 'F..' e r' .
N e) e f 4 v i
"'1|.|. ,':-1’ g I .: ,::-‘I | ’rf
"l ..r"'",';;-.'_'. B T] .
S e
: ik L "r.r E
" -. * l:-. A - F 8 k
- '.i‘:"."'. h.- L-t ‘I h j
- s J s -
" | " '1 ::- .'....'.I-
. a n M .
.':-' 1 v I I _
-"“; ¥ 1N { ’ l ‘ ‘
—_— — = A A .
e =)
i. _ - #' i — | :
d ' ¥
. Y ;
II ;
I i - I" L] L] .
3 : - ,
i .
L I.'Il L] i 1]

TR
“?MM)?’MM’ 08
| akn

A

.
FREEMIND

D o e

PUBS <sniiiinmiom

&
&

1

TR (A
W/ 1" v
V)) v,
h / ' :
03I Ay JSYEINY

NOuD

Yoams ., Onie {/

NV ~
’JI ../'...I

Y] 77

‘ "‘m 'ﬂ

[%
—ﬂl A : ' —~
IILMI-l oMbt

i Ve i

o

[5/4/_-5. I eppid GOy

z’l“" W 7t LM CAJ

Dl

AW, . ! .f"..-.lﬂ "

ol
/’!) ,JJ f

/ /

¥ oad

k‘
W

I —

g b

|

B¥a f f
P wmAn- ~ae— e FAY 4

I!

.

3
d ﬁ&"’”} ‘74

-l"

N

©
!
!

-

) / . /T
TV ULU O Jf

=,
>

/

i

[
| | :
m .

A o J2

M Al /A ”

| /
llrllt Al / | e) / AV ALl 247

.

Vil (L g Z é'/

f‘

]

J | | ‘ |

SEE

() XA U 7 A

L F

/
2 (/
P OLUNL

Al

V.rral

v vandode

O Wex— profle D worpod- (D Port_cormed-

@ Pvla—:—CowM = PDH—.—CMV'—*-”_-—H L Mc“v‘!\b‘#\/ A_"‘""e"'J"’”'WP

@ PVS;)___. ,QI I e '—5 Pw':}'»,ft'ﬁ.-r'd , -’,Wgr}z.q,\?g

@ R"‘Jﬂ : 4@— wa{bwd?

@ '\M@f‘/.ﬂ.p'nﬁ)e OC/)‘MLIIP ww.—pmgme ,
M) | N
@ W) ev - P 0[:)'7@ vs 13 A9 e r-puy/)*

l) N

—

_ﬁ

o PDJ;}‘,—CGWWj\
| A
}”\M Pwr):,ﬂr ke

{4/
| >, ‘ /4

'1‘ i, k’ ,;j"_‘ H ’/’

mjﬂ —> b/l

1"

' G0 L INY

/ '1

lf,‘

27494V

9
i-'g! 7 Yoyl

A

; »"

il

-

My, cd SOV A7 (S~ YO

.“ N LA '_’J’ A/

!

-

Vg,

/
YIAH) (A

m.
AN TV

mm AL V) /l () '@(AUV,

"

l | 3/
J~ _' t"’ﬂ!‘

d4
/44‘1" JI“‘.

EW._J
L 7

!
AU II/ __"... g/ ’ Q777

V)4 »/I) A,l/ (/?

mmm_ T TR

wwally J

= WVid e !J.." L

Oy .
TN A

ﬁgb) h NG

M

i

APV AR Y J AMTBZ

JL‘/

,.//mm
bl

J

’ .
AN, _/4/
Wi

/J
Al // 1))
4 ;
AN XL

T 'ﬂﬂ
104 Wl l £l ©
> (h ’Ifu 1 /l’ ,I//!lh
}
M

/,

'A%)4 /

'Y

; .-."f " x. .
/ | f' A/] s 4 - l
’ - Jr e L J
i A = B - .
ST -
. Vi ‘I
e N
L
s A .' #
= - _:‘-:I_ ‘I"-:"‘l' - .
i
. PR .
NSy b
'- L i
e i
by .
e
.

T/, a1

f
i -
F__ p—— J

| y LAV ™
A N/
)
™ A

UH

/
() bnort Ongiafht °
ol \UBNMdary

MMMWM '.qu ,', ¢ A
;'//"A‘//‘ ,A OC[loly ¥ W/

ey 0

/
oM AN — ”’, 010 U/

]
- Yinam m

| m; .-l.

o () Al
: NAS T

4l

L ! | Ahby ‘ DS f.
) m_mj& Nnis 2
i~

i "M
wn & 1l o Y.
b~ e

\

¥ S
T

'AQA w!.ﬂ /,

ok ol
249 AN

QT

LEC-8: Transform - ER Model to Relational Model

1. Both ER-Model and Relational Model are abstract logical representation of real world enterprises. Because the two
models implies the similar design principles, we can convert ER design into Relational design.
2. Converting a DB representation from an ER diagram to a table format is the way we arrive at Relational DB-design from
an ER diagram.
3. ER diagram notations to relations:
1. Strong Entity
1. Becomes an individual table with entity name, attributes becomes columns of the relation.
2. Entity’'s Primary Key (PK) is used as Relation’s PK.
3. FK are added to establish relationships with other relations.
2. Weak Entity
1. Atable is formed with all the attributes of the entity.
2. PKofits corresponding Strong Entity will be added as FK
3. PKofthe relation will be a composite PK, {FK + Partial discriminator Key}.
3. Single Values Attributes
1. Represented as columns directly in the tables/relations.
4. Composite Attributes
1. Handled by creating a separate attribute itself in the original relation for each composite attribute.
2. e.g, Address: {street-name, house-no}, is a composite attribute in customer relation, we add address-street-
name & address-house-name as new columns in the attribute and ignore "address” as an attribute.
5. Multivalued Attributes
1. New tables (named as original attribute name) are created for each multivalued attribute.
PK of the entity is used as column FK in the new table.
Multivalued attribute’s similar name is added as a column to define multiple values.
PK of the new table would be {FK + multivalued name}.
e.g., For Strong entity Employee, dependent-name is a multivalued attribute.
1. New table named dependent-name will be formed with columns emp-id, and dname.
2. PK:{emp-id, name}
3. FK:{emp-id}
6. Derived Attributes: Not considered in the tables.

7. Generalisation
1. Method-1: Create a table for the higher level entity set. For each lower-level entity set, create a table that

includes a column for each of the attributes of that entity set plus a column for each attribute of the primary key

of the higher-level entity set.
For e.g., Banking System generalisation-of Account - saving & current.

1. Table 1: account (account-number, balance)
2. Table 2: savings-account (account-number, interest-rate, daily-withdrawal-limit)
3. Table 3: current-account (account-number, overdraft-amount, per-transaction-charges)

2. Method-2: An alternative representation is possible, if the generalisation is disjoint and complete—that is, if no
entity is a member of two lower-level entity sets directly below a higher-level entity set, and if every entity in
the higher level entity set is also a member of one of the lower-level entity sets. Here, do not create a table for
the higher-level entity set. Instead, for each lower-level entity set, create a table that includes a column for each
of the attributes of that entity set plus a column for each attribute of the higher-level entity sets.

Tables would be:
1. Table 1: savings-account (account-number, balance, interest-rate, daily-withdrawal-limit)

2. Table 2: current-account (account-number, balance, overdraft-amount, per-transaction-charges)

3. Drawbacks of Method-2: If the second method were used for an overlapping generalisation, some values such
as balance would be stored twice unnecessarily. Similarly, if the generalisation were not complete—that is, if

some accounts were neither savings nor current accounts—then such accounts could not be represented with

the second method.
8. Aggregation

oW N

1. Table of the relationship set is made.
2. Attributes includes primary keys of entity set and aggregation set’s entities.

3. Also, add descriptive attribute if any on the relationship.

KT oran o
G (roriaad)
EnaEEs Lec —&
S i
| _muizﬂ +o
K Aok
- UMQ
= rmoded,

F Compud™ altrbb=s 5 gop odbrbte fir caeh cmpmes

Cimdrnev $=bl

_—'/___-

K Umm:j Qﬂ&%ow L_,'}p " — |
we \~f a&cl anothar ofbde in E)MF)W bl le W

iinchh il be T:K

‘?NJMP..-I‘ O\ oL _) vaﬁ a‘&il'e iwp.._rwﬂr__ I‘CQ
A0 | =T + oS
9L)~ —— — - 20 S

OGS

— F [3 Qda&lmoﬂ Mo&eﬂ

kl) W)?J(___ ‘woﬂ‘ﬂe L W\MM; W-OCN'I’,MWJM"}} P@’”WWA, DOBJ

Q') MW-p-nJ-.‘le.—Wl‘li M&_w—ml)
(3) wWer-profle- coxdaet ((wrerromaShk3, Covdmet-number)

L) Ademdship [profile_vegq, 54-K2 @f-\e_am,,};_@_;)
G’) Posi'-llke.(pogi-.lr'ke-l'c!, -‘hm:vl-awp, post_id Sk 2 mumwi}-kg)
(6) Wwor-pett(Post—id , crested-fmstrmp, medifed dmestomp, fot-codad, womme)

S k1
@) wer-pot-inoge (postid LR, 1mage uvd)

> Cowm Pouw:g kej

(%) mw-—poy\—-—-uidmc_pos:l'-id gF.K§ uicl:.o_.uv»()

(q) PDS}—COMMM'(_Pa‘ig —QMMW‘}-}&'/ ‘P‘mf’-— Cohh»’&; 'Jmerlmf, f;ij'—éc', ;oexvjvwﬂ)
s Fk

LEC-9: SQL in 1-Video

1. SQL: Structured Query Language, used to access and manipulate data.
2. SQL used CRUD operations to communicate with DB.

1. CREATE - execute INSERT statements to insert new tuple into the relation.
2. READ - Read data already in the relations.
3. UPDATE - Modify already inserted data in the relation.
4. DELETE - Delete specific data point/tuple/row or multiple rows.
3. SQLis not DB, is a query language.
4. What is RDBMS? (Relational Database Management System)
1. Software that enable us to implement designed relational model.
2. eg,MySQL, MS SQL, Oracle, IBM etc.
3. Table/Relation is the simplest form of data storage object in R-DB.
4. MySQL is open-source RDBMS, and it uses SQL for all CRUD operations

5. MySQL used client-server model, where client is CLI or frontend that used services provided by MySQL server.
6. Difference between SQL and MySQL

1. SQLis Structured Query language used to perform CRUD operations in R-DB, while MySQL is 3 RDBMS used to
store, manage and administrate DB (provided by itself) using SQL.

SQL DATA TYPES (Ref: https://wwww3schools.com/sql/sql_datatypes.asp)
1. InSQL DB, data is stored in the form of tables.

2. Data can be of different types, like INT, CHAR etc.

DATATYPE : - -
CHAR | sting(0-255), string with size = (0, 255), e.q.,
\CHAR(251)

VARCHAR } .' String(0-255)

TINYTEXT \kl* | String(0-255)

TEXT AN string(0-65535)

BLOB d }w string(0-65535)

MEDIUMTEXT string(0-16777215)

MEDIUMBLOB string(0-16777215)

LONGTEXT string(0-4294967295)

LONGBLOB string(0-4294967295)

TINYINT integer(-128 to 127)

SMALLINT integer(-32768 to 32767)

MEDIUMINT integer(-8388608 to 8388607)

INT integer(-2147483648 to 2147483647)

BIGINT integer (-9223372036854775808 to
9223372036854775807)

FLOAT Decimal with precision to 23 digits

DOUBLE Decimal with 24 to 53 digits

DATATYPE Description

DECIMAL Double stored as string

DATE YYYY-MM-DD

DATETIME YYYY-MM-DD HH:MM:SS

TIMESTAMP YYYYMMDDHHMMSS

TIME HH:MM:SS

ENUM One of the preset values

SET One or many of the preset values

BOOLEAN 0/1

BIT e.g., BIT(n), n upto 64, store values in bits.
3. Size: TINY < SMALL < MEDIUM < INT < BIGINT.
4. Variable length Data types e.g., VARCHAR, are better to use as they occupy space equal to the actual data size.
5. Values can also be unsigned e.g., INT UNSIGNED.
6. Types of SQL commands:

1. DDL (data definition language): defining relation schema.
1. CREATE: create table, DB, view. |
2. ALTER TABLE: modification in table structure. e.g, change colummn datatype or add/remove columns.
3. DROP: delete table, DB, view.
4. TRUNCATE: remove all the tuples from the table:
5. RENAME: rename DB name, table name, columm name etc.
2. DRL/DQL (data retrieval language / data query language): retrieve data from the tables.
1. SELECT
3. DML (data modification language): use to.,perform modifications in the DB
1. INSERT: insert data into a relation
2. UPDATE: update relation data.
3. DELETE: delete row(s) from therelation.
4. DCL (Data Control language): grant or revoke authorities from user.

1. GRANT: access privileges to the DB

2. REVOKE: revoke user access privileges.
5. TCL (Transaction control language): to manage transactions done in the DB

1. START TRANSACTION: begin a transaction

2. COMMIT: apply all the changes and end transaction
3. ROLLBACK: discard changes and end transaction
4. SAVEPOINT: checkout within the group of transactions in which to rollback.

MANAGING DB (DDL)

1. Creation of DB
1. CREATE DATABASE IF NOT EXISTS db-name;

2. USE db-name; //need to execute to choose on which DB CREATE TABLE etc commands will be executed.

[/make switching between DBs possible.
3. DROP DATABASE IF EXISTS db-name; //dropping database.
4. SHOW DATABASES; //list all the DBs in the server.

5. SHOW TABLES: //list tables in the selected DB.

DATA RETRIEVAL LANGUAGE (DRL)
1. Syntax: SELECT <set of column names> FROM <table_name>;
2. Order of execution from RIGHT to LEFT.
3. Q. Canwe use SELECT keyword without using FROM clause?
1. Yes, using DUAL Tables.
2. Dual tables are dummy tables created by MySQL, help users to do certain obvious actions without referring to user
defined tables.
3. eg,SELECT S5 +1;
SELECT now():
SELECT ucase(): etc.
4. WHERE

1. Reduce rows based on given conditions.
2. E.g,SELECT * FROM customer WHERE age > 18;
5. BETWEEN
1. SELECT * FROM customer WHERE age between 0 AND 100;
2. Inthe above e.g., 0 and 100 are inclusive.
6. IN
1. Reduces OR conditions;
2. eg,SELECT* FROM officers WHERE officer_name IN (‘'Lakshay’, ‘Maharana Pratap, ‘Deepika’);
7. AND/OR/NOT
1. AND: WHERE condl AND cond2
2. OR: WHERE cond1 OR cond2
3. NOT: WHERE col name NOTIN (1.2,34):
8. ISNULL CN
1. eg,SELECT * FROM customer WHERE prime_status is HULL;(
9. Pattern Searching / Wildcard ("%, " ")
1. '%’ any number of character from 0 to n. Similar. to.*" asterisk in regex.

2. ', only one character. l
3. SELECT * FROM customer WHERE namtms 96p_;
10. ORDER BY &\

1. Sorting the data retrieved using WHERE clause.
2. ORDER BY <column-name> DESC; ‘"
3. DESC = Descending and ASC = Ascending
4. eg.,SELECT * FROM customer ORDER BY name DESC;
1. GROUP BY
1. GROUP BY Clause is used to collect data from multiple records and group the result by one or more column. It is
generally used in a SELECT statement.
2. Groups into category based on column given.
3. SELECT ¢, @, c3 FROM sample_table WHERE cond GROUP BY 1, 2, c3.
4. All the column names mentioned after SELECT statement shall be repeated in GROUP BY, in order to successfully
execute the query.
5. Used with aggregation functions to perform various actions.
1. COUNT()
2. SUM()
3. AVG()
4. MIN()
5. MAX()
12. DISTINCT
1. Find distinct values in the table.
2. SELECT DISTINCT(col_name) FROM table name;
3. GROUP BY can also be used for the same
1. “Select col_name from table GROUP BY col_name;" same output as above DISTINCT query.

2. SQL is smart enough to realise that if you are using GROUP BY and not using any aggregation function, then
you mean "DISTINCT".

13. GROUP BY HAVING
1. Out of the categories made by GROUP BY, we would like to know only particular thing (cond).

2. Similar to WHERE.

3. Select COUNT(cust_id), country from customer GROUP BY country HAVING COUNT(cust_id) > 50;
4. WHERE vs HAVING

Both have same function of filtering the row base on certain conditions.

WHERE clause is used to filter the rows from the table based on specified condition

HAVING clause is used to filter the rows from the groups based on the specified condition.
HAVING is used after GROUP BY while WHERE is used before GROUP BY clause.

If you are using HAVING, GROUP BY is necessary.
WHERE can be used with SELECT, UPDATE & DELETE keywords while GROUP BY used with SELECT.

Y T

CONSTRAINTS (DDL)
1. Primary Key

1. PKis not null, unique and only one per table.
2. Foreign Key

1. FK refers to PK of other table.

2. Each relation can having any numberoffK

3. CREATE TABLE ORDER (

id INT PRIMARY KEY,
delivery_date DATE,
order_placed_date DATE,
cust _id INT,
FOREIGN KEY (cust_id) REFERENCES customer(id)
)

3. UNIQUE

1. Unique, can be null, table can have multiple unique attributes.

2. CREATE TABLE customer (
email VARCHAR(1024) UNIQUE,

);
4. CHEC
1. CREATE TABLE customer (

CONSTRAINT age_check CHECK (age > 12),

y

2. "age_check", can also avoid this, MySQL generates name of constraint automatically.

5. DEFAULT
1. Set default value of the column.
2. CREATE TABLE account (

saving-rate DOUBLE NOT NULL DEFAULT 4.25,
)
6. An attribute can be PK and FK both in a table.
7. ALTER OPERATIONS
1. Changes schema
2. ADD
1. Add new column.
2. ALTER TABLE table_name ADD new_col_name datatype ADD new_col_name_2 datatype;
3. eg,ALTER TABLE customer ADD age INT NOT NULL;
3. MODIFY
1. Change datatype of an attribute.
2. ALTER TABLE table-name MODIFY col-name col-datatype;
3. E.g,VARCHARTO CHAR
ALTER TABLE customer MODIFY name CHAR(1024);
4. CHANGE COLUMN
1. Rename column name.
2. ALTER TABLE table-name CHANGE COLUMN old-col-name nm&(—name new-col-datatype;
3. e.g,ALTER TABLE customer CHANGE COLUMN name customer-name VARCHAR(1024);
5. DROP COLUMN N
1. Drop a column completely. - (
2. ALTER TABLE table-name DROP COLUMN col-name
3. eg,ALTER TABLE customer DROP COLUMNmiddle-name;
6. RENAME ‘\

1. Rename table name itself. \%Ew
2. ALTER TABLE table-name RENAME TO new-table-name:;

3. eg.,ALTER TABLE customer WE TO customer-details;

DATA MANIPULATION LANGUAGE (DML)

1. INSERT
1. INSERT INTO table-name(coll, col2, col3) VALUES (v1, v2, v3), (vall, val2, val3);
2. UPDATE

1. UPDATE table-name SET coll =1, col2 = ‘abc' WHERE id = 1:
2. Update multiple rows e.g,
1. UPDATE student SET standard = standard + 1;
3. ON UPDATE CASCADE
1. Can be added to the table while creating constraints. Suppose there is a situation where we have two tables
such that primary key of one table is the foreign key for another table. if we update the primary key of the first
table then using the ON UPDATE CASCADE foreign key of the second table automatically get updated.
3. DELETE
1. DELETE FROM table-name WHERE id =1;
2. DELETE FROM table-name; //all rows will be deleted.

3. DELETE CASCADE - (to overcome DELETE constraint of Referential constraints)
1. What would happen to child entry if parent table's entry is deleted?
2. CREATE TABLE ORDER (
order_id int PRIMARY KEY,
delivery_date DATE,
cust_id INT,

FOREIGN KEY(cust_id) REFERENCES customer(id) ON DELETE CASCADE
)
3. ON DELETE NULL - (can FK have null values?)
1. CREATE TABLE ORDER (
order id int PRIMARY KEY,
delivery_date DATE,
cust id INT
FOREIGN KEY(cust_id) REFERENCES customer(id) ON DELETE SET NULL
);
4. REPLACE
1. Primarily used for already present tuple in a table.
As UPDATE, using REPLACE with the help of WHERE clause in PK, then that row will be replaced.
As INSERT, if there is no duplicate data new tuple will be inserted.
REPLACE INTO student (id, class) VALUES(4, 3);
REPLACE INTO table SET coll = vall, col2 = val2;

Vi & W M

JOINING TABLES

L

2.
3.

All RDBMS are relational in nature, we refer to other tables to get meaningful outcomes.
FK are used to do reference to other table.
INNER JOIN
1. Returns a resultant table that has matching values from both the tables or all the tables.
2. SELECT column-list FROM tablel INNER JOIN table2 ON conditioni
INNER JOIN table3 ON condition? N\

¢

\
3. Aliasin MySQL (AS) §
1. Aliases in MySQL is used to give a temporary name tﬂ\é\(%lﬂ or a column in a table for the purpose of

a particular query. It works as a nickname for @s?ng the tables or column names. It makes the query short

and neat.
2. SELECT col_name AS alias_name
3. SELECT col_namel, col_name2,..
OUTER JOIN
1. LEFTJOIN

tabie name
ble name AS alias_name;

1. This returns a resulting table that all the data from left table and the matched data from the right table.

2. SELECT columns FROM table LEFT JOIN table2 ON Join_Condition;
2. RIGHT JOIN

1. This returns a resulting table that all the data from right table and the matched data from the left table.

2. SELECT columns FROM table RIGHT JOIN table2 ON join_cond;
3. FULLJOIN
1. This returns a resulting table that contains all data when there is a match on left or right table data.
2. Emulated in MySQL using LEFT and RIGHT JOIN.
3. LEFT JOIN UNION RIGHT JOIN.
4. SELECT columns FROM table1 as t1 LEFT JOIN table2 as t2 ON tl.id = t2.id
UNION
SELECT columns FROM tablel as t1 RIGHT JOIN table2 as t2 ON tl.id = t2.id;
5. UNION ALL, can also be used this will duplicate values as well while UNION gives unique values.
CROSS JOIN
1. This returns all the cartesian products of the data present in both tables. Hence, all possible variations
are reflected in the output.
2. Used rarely in practical purpose.
3. Table-1 has 10 rows and table-2 has 5, then resultant would have 50 rows.
4, SELECT column-lists FROM table1 CROSS JOIN table2;
SELF JOIN

@-

FULL OUTER JOIN

R

It is used to get the output from a particular table when the same table is joined to
Used very less.

Emulated using INNER JOIN.

SELECT columns FROM table as t1 INNER JOIN table as t2 ON tl.id = t2.id;

T N

 § lnln without using join keywords.

1. SELECT * FROM tablel, table2 WHERE condition:
2. eg, SELECT artist_name, album_name, year_recordedFROM artist, albumWHERE

SET OPERATIONS

1.

Used to combine multiple select statements.

2. Always gives distinct rows.

itself.

artist.id = album.artist _id;

JOIN SET Operations
Combines multiple tables based on matching Combination is resulting set from two or more
condition. SELECT statements.
Column wise combination. Row wise combination.
Data types of two tables can be different. Datatypes of corresponding columns from each
table should be the same.
Can generate both distinct or duplicate rows. Generate diitimt rows.
The number of column(s) selected may or may not | The number'ef'column(s) selected must be the
be the same from each table. same.from each table.
Combines results horizontally. Cmilé:as results vertically.
3. UNION
1. Combines two or more SELECT statements. ¢
2. SELECT* FROM tablel A\
UNION {
SELECT * FROM table2; ¢
3. Number of column, order of column r:‘[ust be same for table1 and table2.
4. INTERSECT
1. Returns common values of the tables.
2. Emulated.
3. SELECT DISTINCT column-list FROM table-1 INNER JOIN table-2 USING(join_cond);
4. SELECT DISTINCT * FROM table1 INNER JOIN table2 ON USING(id);
5. MINUS
1. This operator returns the distinct row from the first table that does not occur in the second table.
2. Emulated.
3. SELECT column_list FROM table1 LEFT JOIN table2 ON condition WHERE table2.column_name IS NULL;
4. eg,SELECT id FROM table-1 LEFT JOIN table-2 USING(id) WHERE table-2.id IS NULL;
SUB QUERIES
1. Quter query depends on inner query.
: W SQL Subquery
2. Alternative to joins.
3. Nested queries. R —
4. SELECT column_list (s) FROM table_name WHERE column_name OPERATOR o
(SELECT column_list (s) FROM table _name [WHERE]); 4 _,//I Bt
5. eg.,SELECT * FROM tablel WHERE coll IN (SELECT coll FROM tablel);
6. Sub queries exist mainly in 3 clauses

1. Inside a WHERE clause.

2. Inside a FROM clause.
3. Inside a SELECT clause.
7. Subquery using FROM clause
1. SELECT MAX(rating) FROM (SELECT * FROM movie WHERE country = ‘India’) as temp;
8. Subquery using SELECT
1. SELECT (SELECT column_list(s) FROM T_name WHERE condition), columnList(s) FROM T2 name WHERE
condition:
9. Derived Subquery
1. SELECT columnLists(s) FROM (SELECT columnLists(s) FROM table name WHERE [condition]) as new table name;
10. Co-related sub-queries

1. With a normal nested subquery, the inner SELECT query SELECT columnl. column?

runs first and executes once, returning values to be used by FROM tablel as outer
the main query. A correlated subquery, however, executes WHERE columnl operator

_ _ (SELECT columnl, column2
once for each candidate row considered by the outer query. FROM table?

In other words, the inner query is driven by the outer query. WHERE exprl =
outer.expr2);

JOIN VS SUB-QUERIES

JOINS SUBQUERIES
Faster Slower
Joins maximise calculation burden on DBMS Keeps respﬂnsihility of calculation on user.

. —

Complex, difficult to understand and implement Comparatively easy to understand and implement.

Choosing optimal join for optimal use case is Easy.
difficult ¢
\\
MySQL VIEWS

1. Aview is a database object that has no values. Its contents are based on the base table. It contains rows and columns
similar to the real table.

2. In MySQL, the View is a virtual table created by a query by joining one or more tables. It is operated similarly to the base
table but does not contain any data of its own.

3. The View and table have one main difference that the views are definitions built on top of other tables (or views). If any

changes occur in the underlying table, the same changes reflected in the View also.

CREATE VIEW view_name AS SELECT columns FROM tables [WHERE conditions);

ALTER VIEW view_name AS SELECT columns FROM table WHERE conditions:

DROP VIEW IF EXISTS view name:

CREATE VIEW Trainer AS SELECT c.course_name, c trainer, t.email FROM courses ¢, contact t WHERE c.id = t.id: (View

using Join clause).

N ow»oa

NOTE: We can also import/export table schema from files (.csv or json).

NR eI \saAllér) .

WA el W LF 2

#

0
9 S\ (D0 IWNA U

~AIWY

lﬁul : llu

1 :.u;.,lm 40 M0 L/

)

D

Anomalies

1. Anomalies means abnormalities, there are three types of anomalies introduced by data redundancy.

2. Insertion anomaly
1. When certain data (attribute) can not be inserted into the DB without the presence of other data.

3. Deletion anomaly
1. The delete anomaly refers to the situation where the deletion of data results in the unintended loss of some

other important data.

4. Updation anomaly (or modification anomaly)
1. The update anomaly is when an update of a single data value requires multiple rows of data to be updated.
2. Due to updation to many places, may be Data inconsistency arises, if one forgets to update the data at all the

intended places.

5. Due to these anomalies, DB size increases and DB performance become very slow.

6. To rectify these anomalies and the effect of these of DB, we use Database optimisation technique called
NORMALISATION.

What is Normalisation?

1. Normalisation is used to minimise the redundancy from a relations. It is also used to eliminate undesirable
characteristics like Insertion, Update, and Deletion Anomalies.

2. Normalisation divides the composite attributes into individual attributes OR larger table into smaller and links them
using relationships.

3. The normal form is used to reduce redundancy from the database table.

‘

o
Wl ol 40 Al Sy udinnon

A

-r__-—-——'—'_"'-—"—_-__

:.] |“ '4' !A, [(§ ",'A

CXL(

o iA

—

OV A b

K ‘

WI\W‘HMM st

@i el

hmu‘u 0 V41 /;.u
b Rlgh

iu

U 10..154:1 ol

valh™ valic

m a/

7 7
(071 3) (U

“u ’LA‘" ”.&J" (A

.MM

AUl

' wi: .

N m_.:_ ;l‘

Shded .
Shadent D P?‘Ué’c'f' 115 Schal e d- Nown<
- S 59 Y 9 ' AVAL:
Gl F@‘ﬁ\]rﬁ‘(cb
C SL N Mva

Ny Gl /D" ; afex
P’”’b}ec"" é

0 Y G2
P04 C s

' : : !
(
h'/. “A‘ d AL

\/\

L= & — =D C Toron nre O(W"’D)

) Oge,c@w}ﬂmQ I NS

R, (AR Al B C)
QAR i,
a | oy >
1= \‘ B= 7
Ly |
by | 3

4. BCNF (Boyce-Codd normal form)
1. Relation must be in 3NF.
2. FD:A->B,Amust be a super key.
1. We must not derive prime attribute from any prime ‘or non-prime attribute.
8. Advantages of Normalisation
1. Normalisation helps to minimise data redundancy.
2. Greater overall database organisation.

3. Data consistency is maintained in DB.

Shd 1D &UJe}e__c:f— Qa’bgcmmf
(D] %wa =8
| D CPP Pe
| 0L)aua P:]_Z_
| 0% CFH PE—___#
| DM Jova £

— D2 Shderd™ Con €m~:b’l " M _Cub) 0217
Otw’ 200 Sm]r)ﬁc"f‘} A Py wm/ 1S wtpd “Jﬂ) Q Sf‘l"ue‘f/—ﬂl*

— Mh l ¢ u~ _Dan Teac b a Qw dc'f‘
e P m L...»-:_ Mo"‘ ® "ﬁm J Qb\):?)ﬂé,q_’

Pk iSMf——fD, Suhyeet

@ ESM D, Sula)e’f_j —> Poofe
@ P]E-e/mf“/ — Sulject

‘2) @CNF CovVes o~

..---":;._-—-
T
i e pid
|0 |
| O \ 2
1 f
OWJC-U\«W

—

' .
| Savha S * 2

f [/
@AY AR o bl D A

.,'

/A
- ih /b

QM
—-mm-:-
-I'-E—.IMDM

-'-_'
S l’ u

{ »
[s SHLINRI 7 47

\

YAV VaYil0alva

L Y

.il‘&n‘ . J"‘ ,}l

I ()] (A

L sss——

/

‘Jhl

o 0
VAYRVNA 781 (QUNS ALY

I aensih 2

PR J
Ii;;i_ r.-#?;ﬁ.
e e ,
: -"': N 'r L.
A G e = DI ll ‘ /
5w AN A B
FAPE A A -
B llf LI o . __I... i . ﬁ
5 R i T LT
g -‘I B f‘?f L i T
RN L s A L :
.-".r et - Wy =" 1 " e J - / ‘
:n'r “"i N r . - P ‘
T e TS T et ’ ’
" i .l', - e = .I-- ey)
'-'-,'f';.‘r'."" ._:f ﬁ- " \ / '-.
- -‘ ;':"..‘." "" l:‘;. B L ""Tﬂ N
r';"_.- _1-_‘_ ' 1 -'-T'.":-- Py -
i 'I-L'L"'- 3 LHT; T
-] 'I.‘:. 1 [L ‘_ll'._"-_- &
TR S R J’ l {
SR I-I'|.-H :i'. " .
.1 T (] ,‘I i s O J
.-. - h :_"_'1 -. = ! \.ﬁ.
I . 4 - . "
phes e " o AR Ll
% '- P | A

JU

v

!,..

t

~
-
’- r

P

0o Z OO

6
08 [¥

>
a

(€=

/i

_ _, _ / 1 O
| '}/ YUAON] " }711.“ ' P g jlll—u

A ELY

n //
A ..,./u,.{" NG N AN AAppes Vy [V 1442 A 7
: 4/ |
i Va

//
[l Yabind et & 1l
Yyl o '

Dt/ guccsy 2. U

e |
{ /7 NN 7), 7 Aate

1L

) I ¢ y
L 7 U/ L Qi [=~ S/
Lot Ut

’A.'A.;.l m
WM 7

:
wd

W aewo

Page

——— e
e

Y [, D UNLA AN

!

NI
n

/, !1

E _1/.. ,,/m

I'

/14 b‘d// A./
/ (] / /
/ll 24 AN 777

Y

e

. /
’l‘ll Y YU/ a}& WL, 2

3. Transaction states

oW Fermanent -
. store
operations
Failure
Fallure
Roll back -

Transaction States in DBEMS

1. Active state
1. The very first state of the life cycle of the transaction, all the.read and write operations are being
performed. If they execute without any error the T comes to Partially committed state. Although if any
error occurs then it leads to a Failed state.
2. Partially committed state
1. After transaction is executed the changes aresaved in the buffer in the main memory. If the changes made
are permanent on the DB then the state will transfer to the committed state and if there is any failure, the T
will go to Failed state.
3. Committed state

1. When updates are made permanent on the DB. Then the T is said to be in the committed state. Rollback
can't be done from the committed states. New consistent state is achieved at this stage.
4. Failed state
1. When T is being executed and some failure occurs. Due to this it is impossible to continue the execution of

the T.
5. Aborted state

1. When T reaches the failed state, all the changes made in the buffer are reversed. After that the T rollback

completely. T reaches abort state after rollback. DB's state prior to the T is achieved.
6. Terminated state

1. Atransaction is said to have terminated if has either committed or aborted.

LEC-13: How to implement Atomicity and Durability in Transactions

Recovery Mechanism Component of DBMS supports atomicity and durability.
Shadow-copy scheme
Based on making copies of DB (aka, shadow copies).
Assumption only one Transaction (T) is active at a time.
A pointer called db-pointer is maintained on the disk; which at any instant points to current copy of DB.
T, that wants to update DB first creates a complete copy of DB.
All further updates are done on new DB copy leaving the original copy (shadow copy) untouched.
If at any point the T has to be aborted the system deletes the new copy. And the old copy is not affected.
If T success, it is committed as,
1. OS makes sure all the pages of the new copy of DB written on the disk.
DB system updates the db-pointer to point to the new copy of DB.
New copy is now the current copy of DB.
The old copy is deleted.
_ The Tis said to have been COMMITTED at the point where the updated db-pointer is written to disk.
8. Atomicity
1. If T fails at any time before db-pointer is updated, the old content of DB are not affected.
2. Tabort can be done by just deleting the new copy of DB.
3. Hence, either all updates are reflected or none.

9. Durability
1. Suppose, system fails are any time before the updated db-pointer is written to disk.
2. When the system restarts, it will read db-pointer & will thus, see the original content of DB and none of the effects of T will
be visible.
3. Tisassumed to be successful only when db-pointer is updated. |
4. |f system fails after db-pointer has been updated. Before that all the pages.of the new copy were written to disk. Hence,

when system restarts, it will read new DB copy. |
10. The implementation is dependent on write to the db-pointer being atomic.Luckily, disk system provide atomic updates to entire
block or at least a disk sector. So, we make sure db-pointer lies'eftirely ifi a single sector. By storing db-pointer at the beginning
of a block.
1. Inefficient, as entire DB is copied for every Transaction.

Log-based recovery methods
1. The log s a sequence of records. Log of each transaction is maintained in some stable storage so that if any failure occurs, then

it can be recovered from there. :
2. If any operation is performed on the database;then it will be recorded in the log.
But the process of storing the logs should bé dene before the actual transaction is applied in the database.
4. Stable storage is a classification of computer data storage technology that guarantees atomicity for any given write operation

and allows software to be written that is robust against some hardware and power failures.

5. Deferred DB Modifications
1. Ensuring atomicity by recording all the DB modifications in the log but deferring the execution of all the write operations

until the final action of the T has been executed.

Log information is used to execute deferred writes when T is completed.
If system crashed before the T completes, or if T is aborted, the information in the logs are ignored.

If T completes, the records associated to it in the log file are used in executing the deferred writes.
5. If failure occur while this updating is taking place, we preform redo.

6. Immediate DB Modifications
1. DB modifications to be output to the DB while the T is still in active state.

DB modifications written by active T are called uncommitted modifications.
In the event of crash or T failure, system uses old value field of the log records to restore modified values.
Update takes place only after log records in a stable storage.

Failure handling
1. System failure before T completes, or if T aborted, then old value field is used to undo the T.

2. If T completes and system crashes, then new value field is used to redo T having commit logs in the logs.

NowaswN =

noBs W N

w
B W N

Vs W N

Pcﬁﬁ gg\wﬁ: T V7, « [0,000 Yece

—

B3
1>
G
t 244 |
Elnu
owp®

Tot B/

_||: |

A I

IM M..l..o,a: 3.%.%.%1 X
S (S i
Al 1 i
.w¢

~+~

S

ot C\

HERRGa

N PLX

Z

Data bock in Memory

Primary Level Index
(RAM)

Secondary Level Index
(Hard Disk)

SRz MBS N ENE e RGN

R
[T at= S.::JM" g1l M v~ by
Nobl |
V) 2]D) ey, ka V\O,L"_Jlj
[© | SCrapbookiig
! | | G,
)= | l

DIz e SN N SE IR SN
© se

—

| |

W) ex's > GQM;‘—#M 19.,(4_ _ AL / oA / uflj

| Tat= S o0- g/ Muvpai
okl

i P,) Moy *'ik(/" hol"lﬂ?
(] | V)
t’ i
"L | | QJK:@

D sab

Wexe

}V\ _SQL/ VS ND

> Podn Modedis

19,,(‘.\- _\NL

S o=

§iE\ (L

PC..E}A

@ NoS DL .

ACID vs BASE — Comparison Table

Feature

Full Form

Database Type

Consistency Model

Availability

Transacktion Support

Scalability

Schema

Faillure Handling

Performance

Best Use Cases

Examples

One-line memory tip:
ACID = Correctness first | BASE = Availability First

ACID

Atomicity, Consistency, Isolation,
Durability

Relational (RDBMS)

Strong consistency

Lower compared to BASE

Full transaction support

Vertical scaling (hard)

Fixed schema

Rolls back on Failure

Slower due to strict rules

Banking, finance, critical systems

MySQL, PostgreSQL, Oracle

o

BASE

Basically Available, Soft State, Eventual

Consistency

NoSQL

Eventual consistency

High availabiliby

Limited / relaxed transactions

Horizontal scaling (easy)

Flexible / schema-less

System remains available

Faster due to relaxed rules

Big data, socal media, real-time analytics

MongoDB, Cassandra, DynamoDB

